
www.manaraa.com
Page 1 of 36

COMPUTER SCIENCE | RESEARCH ARTICLE

A mathematical multi-dimensional mechanism
to improve process migration efficiency in peer-
to-peer computing environments
Ehsan Mousavi Khaneghah, Reyhaneh Noorabad Ghahroodi and Amirhosein Reyhani ShowkatAbad

Cogent Engineering (2018), 5: 1458434

Machine a

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1080/23311916.2018.1458434&domain=pdf&date_stamp=2018-03-29

www.manaraa.com

Mousavi Khaneghah et al., Cogent Engineering (2018), 5: 1458434
https://doi.org/10.1080/23311916.2018.1458434

COMPUTER SCIENCE | RESEARCH ARTICLE

A mathematical multi-dimensional mechanism to
improve process migration efficiency in peer-to-
peer computing environments
Ehsan Mousavi Khaneghah1*, Reyhaneh Noorabad Ghahroodi1 and Amirhosein Reyhani
ShowkatAbad1

Abstract: In high-performance computing systems, choosing a suitable mechanism
for migrating the processes has direct effects on the performance of the system. In
traditional systems like clusters, process transmission in process migration manage-
ment is done using a single mechanism. By changing the requirements of comput-
ing systems, open systems like grid and peer-to-peer systems are created. In these
systems, the system management does not have a complete view of the nature of
all processes due to scalability. Therefore, using a fixed mechanism may decrease
the performance of the system. This paper represents a mathematical model for
choice process migration mechanism using vector definition of global activities and
migration mechanisms. This model helps in the management of process migration
by considering the system’s situation and also based on processes types begin to
choose a process migration strategy. The result of evaluation indicates the valid-
ity of this mathematical model. The required information for this modeling can be
extracted from the data structures of the operating system.

*Corresponding author: Ehsan Mousavi
Khaneghah, Department of Computer
Engineering, Shahed University, Tehran,
Iran
E-mail: emousavi@shahed.ac.ir

Reviewing editor;
Robnik-Šikonja University of Ljubljani,
Slovenia

Additional information is available at
the end of the article

ABOUT THE AUTHORS
Ehsan Mousavi Khaneghah is a faculty member
of Computer Engineering Department of Shahed
University. His research interest is design
and development of distributed computing
systems. He is researching on the developing
of a distributed Exascale computing system. He
had a patent called “‘PMamut: runtime flexible
resource management framework in a scalable
distributed system based on nature of the request,
demand and supply and federalism.’ U.S. Patent
No. 9,613,312. 4 Apr. 2017.” Reyhaneh Noorabad
Ghahroodi is BSc student of computer engineering
in Shahed University. She began her research with
Beowulf clusters. The main field of her research
is process migration and scrutiny its challenges
in a variety of traditional and modern computing
systems. Amirhosein Reyhani ShowkatAbad, a BS
student at the Shahed University. He is interested
in natural language processing and High
Performance Computing systems and has done
some researchers in the mentioned fields.

PUBLIC INTEREST STATEMENT
The next generation of computing systems are
known as distributed Exascale computing systems,
and enhancing each element's performance
will improve the functionality of the system. The
process migration plays an undeniable roll in all
computing systems, so the performance of this
element has direct effects on the whole system.
In distributed Exascale computing systems, due to
the probability of happing dynamic and interactive
nature, using a single mechanism for process
migration may decrease the performance of the
system. For enhancing the performance of the
system, a flexible, mechanism with the ability of
adapting all kind of processes, is required. MDPM
mechanism by considering five vector parameters
as indicator of each process, tries to choose a
suitable mechanism among four traditional
mechanisms.

Received: 07 August 2017
Accepted: 19 March 2018
First Published: 29 March 2018

© 2018 The Author(s). This open access article is distributed under a Creative Commons
Attribution (CC-BY) 4.0 license.

Page 2 of 36

http://crossmark.crossref.org/dialog/?doi=10.1080/23311916.2018.1458434&domain=pdf&date_stamp=2018-03-29
mailto:emousavi@shahed.ac.ir
http://creativecommons.org/licenses/by/4.0/

www.manaraa.com
Page 3 of 36

Mousavi Khaneghah et al., Cogent Engineering (2018), 5: 1458434
https://doi.org/10.1080/23311916.2018.1458434

Subjects: Distributed Systems; Parallel Systems; Computer Science (General)

Keywords: cluster computing systems; process migration; scalability; global activity;
distributed peer-to-peer computing systems; vector algebra

1. Introduction
In traditional high-performance computing (HPC) systems, the system management has complete
information about all machines and properties of whole running processes due to the closure of
system based on system thinking theory (Barak & Shiloh, 2013; Hussain et al., 2013; Tzeng, Huang, &
Chao, 2014). Therefore, when the load distribution is impaired based on the available information
about entire processes and available resources the load balancer decides to displace some pro-
cesses to reload balancing. After making decisions about swiping, the process migration proceeds to
transmit a process, and a new load-balancing pattern is built (Jianjun, Xia, Mojiong, Zhou, & Donghai,
2015). The main result of running the process migration is to get a new pattern of load balancing for
achieving high-performance computing (Desai & Prajapati, 2013; Rajan & Jeyakrishnan, 2013).

Process migration is the transfer of a part or the entire running process from one node to another
under the designed conditions. Any system using process migration should have the capability of
running the process on each of the systems’ node. In general, the HPC systems use a process migra-
tion for process transition and its management (Barak, Margolin, & Shiloh, 2012; Barak & Shiloh,
2013; Medina & García, 2014).

In cluster computing systems, selecting a suitable mechanism for process migration has a direct
effect on the functionality and performance of the system (Khorandi, Mirtaheri, Khaneghah, Sharifi,
& Ghiasvand, 2011; Medina & García, 2014; Sharifian & Sharifi, 2013). If the process migration is not
suitable for the computing system’s properties such as candidate process and the available resource
properties, then there is an increase in the process migration time. It should be noted that in cluster
computing systems, the system computes only one job (Luntovskyy & Spillner, 2017).

The intended purpose of the computing job is a process that a cluster computing system is de-
signed to handle. To complete this activity, the system begins to create a set of processes that can
be treated by the computing nodes. These created processes have plenty of communications among
them and have resource dependencies that make these processes different from those executing on
the local machine. On the other hand, the computing nodes in a cluster computing system are fixed
during runtime; hence, it cannot be decreased or increased (Hussain et al., 2013; Khorandi et al.,
2011). Usually, cluster management comprises these two concepts, and the work of process migra-
tion management is to select a uniting mechanism for process migration (Egwutuoha, Levy, Selic, &
Chen, 2013).

The process migration mechanism is selected by the special properties of the job activity (like in-
terprocess communication type, resource dependency) and the special properties of the resource
like conditions of servicing to the local and global processes. After the selection of a suitable mecha-
nism, the transfer of process from the source machine to destination computer takes place. It was
seen that if the chosen mechanism was not based on the named properties, the migration time and
probability of transmission failure increased, whereas increasing process migration time may de-
crease the performance of the system (Svärd, Hudzia, Walsh, Tordsson, & Elmroth, 2015).

On the other hand, when a process is selected as a candidate for migration, the process state is
changed to suspend state (Khorandi et al., 2011; Medina & García, 2014), i.e. all communications
between the process and local as well as global processes are denied. Some mechanisms aim to
reduce the freeze time, but this may increase the load volume and ruling traffic among the network.
If the CPU spends time on the non-computing activity operations such as process migration, then
the performance of the system decreases (Svärd et al., 2015).

www.manaraa.com
Page 4 of 36

Mousavi Khaneghah et al., Cogent Engineering (2018), 5: 1458434
https://doi.org/10.1080/23311916.2018.1458434

The process migration mechanism should be compatible with process type and the situation of
resources that are being used during transmissions or resources that play a role in process migra-
tion. As only one computing job can be defined in cluster systems, all processes that exist in the
system are related to this activity. In this situation, each determined property of computing activity
can be expanded to all processes. If the required properties that determine the process migration
mechanism are defined then they can be used for each global process. On the other hand, the avail-
able resources do not change in the cluster system, so the extracted information is always valid
(Adams et al., 2015; Hussain et al., 2013).

This application can be run by changing the concept and nature of scientific applications. In other
words, high-performance computing can be extended to open computing like Grid and Cloud com-
puting. Scalability and openness are the main results of this evaluation. Thus, it can be said that
open computing systems are cluster computing systems with the features of distributed systems
like scalability and interconnections (Adams et al., 2015; Javanmardi, Shojafar, Shariatmadari, &
Ahrabi, 2014).

In peer-to-peer computing systems, the system manager does not have a complete and exact
view of all the available resources and nature of all the running processes due to scalability and the
ability to define new global activities (Khaneghah, 2017; Khaneghah & Sharifi, 2014; Sharifi, Mirtaheri,
& Mousavi Khaneghah, 2010) at the system level.

If load distribution impairs, then scalability makes the system unable to be used as a single mech-
anism for process migration. According to changing the resource, the process migration manage-
ment in this kind of systems requires gathering information about the source and destination
machines for each process migration operation. On the other hand, this issue makes changing of
resources available during the time of migration while this feature is not available in cluster systems
(Hussain et al., 2013; Khaneghah, 2017; Khaneghah & Sharifi, 2014; Khorandi et al., 2011).

The most challenging issue in process migration is the concept of executing more than one global
activity in a system. In a peer-to-peer computing system, the ability to process more than one global
activity is available (Adams et al., 2015; Khaneghah, 2017; Khaneghah & Sharifi, 2014); this indicates
that in each specified moment during the whole processing time, more than one global activity’s
execution can be observed. This issue will create plenty of process groups, which are related to a
global activity.

Each of the created groups may have different properties of process migration. These differences
and the scalability of peer-to-peer computing systems do not let us select a united mechanism for
process migrations, unlike cluster computing systems, which use a single and united mechanism for
process migration. Regarding the special properties of each global activity and the global activity
creator groups, a unit, and special mechanism must be determined.

In peer-to-peer computing systems, each global activity creates a pseudo cluster computing sys-
tem (Javanmardi et al., 2014). This means, when a global activity begins its execution, groups of
membered machines based on the ruling policy and their abilities begin processing. These sets of
machines can be named as a cluster computing system that processes a determined global activity.
The most significant issue is the appearance of a machine in a logical cluster system; this can make
a machine to be a member of more than one logical cluster system. In a peer-to-peer system, some
machines can be a member of more than one logical cluster; in this situation, the machines are
considered as logical sets. A logical machine is a set of abilities, which a machine exploits to execute
a determined global activity (Navimipour & Milani, 2015; Sharifi, Mirtaheri, Khaneghah, & Khaneghah,
2011).

The peer-to-peer computing systems allow the use of a mathematical model for indicating the
process migration parameters and modeling the mechanisms. These properties are used for

www.manaraa.com
Page 5 of 36

Mousavi Khaneghah et al., Cogent Engineering (2018), 5: 1458434
https://doi.org/10.1080/23311916.2018.1458434

indicating which parameters should be considered as a suitable mechanism for process migration.
Meanwhile, in this paper, we define the required parameters for process migration, and also the
basic process migration mechanisms that are used in cluster systems.

In high performance computing systems, the nature of the system is in a way that, only one global
activity (Khaneghah, 2017; Khaneghah & Sharifi, 2014; Sharifi et al., 2010) is able to run and execute.
The designer of the computing system, in this type of computing system, based on the nature of the
application (the behaviors and the patterns of the application at a runtime) as well as the nature of
the mechanism used for the load distribution, has determined an appropriate mechanism for pro-
cess migration. This mechanism, figure out by the conditions of implementation of the program and
the constraints governing on processes of the program builder, including time constraints, as well as
the size of processes in the system, among the existing conventional mechanisms, these parame-
ters will determine a suitable mechanism for process migration in traditional computing systems.
While computing systems designed to run and execute more complex scientific and applications
such as peer-to-peer systems and distribution systems and distributed Exascale systems, it is pos-
sible to run more than one global activity during the system’s whole life.

Running more than one global activity causes the state of a computing node of a system member
to occur at a given moment at which the computing system manager is executing more than one
global activity. The processes which contain a global activity, usually have common characteristics
in the context of constraints, time constraints, and size constraints. There may be a situation in the
system that the system’s manager, based on the decision of the load distribution, requires the mi-
gration of two (or more than two) global computational processes, each of which belongs to a global
activity, Therefore, in this setting, the process migration should transfer two (or more than two)
processes that have constraints and time constraints as well as different sizes based on a process
migration unit mechanism. This will cause either the functionality of the process migration to be
reduced or the operation of the process migration be failed.

The traditional HPC systems proceed a single global activity, this makes the ability of choosing a
suitable-single mechanism for executing the process migration, although due to more than one
defined global activity, in newly stated systems such as Distributed Exascale systems and Peer to
Peer Computing systems, a single mechanism would not meet the systems requirements, this issue
makes all the processes be more complicated.

In traditional computing systems, the system has been initiated to run and execute a single global
activity for a long period of time, since this will help the process migration to explore and choose the
best and most suitable mechanism for proceeding the process migration. In these systems, the best
mechanism can also be defined by the given information about the process by the user; the pattern
to rebalance the load of the system which is used by the load balancing manager also can influence
the selected mechanism.

In newly stated systems such as Distributed Exascale systems and Peer to Peer computing sys-
tems, since more than one global activities are proceeding, the computing nodes are contributed to
proceed more than one process; this issue makes the process migration to explore a suitable mecha-
nism which is adapted to only one of the contributed process.

In computing systems designed to execute complex scientific and applications, the system should
normally be compatible with traditional computing systems. The reason of this issue refers to the
nature of the scientific and applied programs that run on these types of computing systems. Thus,
defining a single mechanism as process migration mechanism leads to the inability of the comput-
ing system to execute traditional computing programs. The process migration must be able to
choose a mechanism, based on the traditional processes defined for process migration, and based
on a set of indicators, which one of these mechanisms has the most adaptive nature of the
process.

www.manaraa.com
Page 6 of 36

Mousavi Khaneghah et al., Cogent Engineering (2018), 5: 1458434
https://doi.org/10.1080/23311916.2018.1458434

The mathematical model represented in this paper enables the process migration management
to choose a suitable mechanism by matching the calculated vector for the global activity and the
vectors of each process migration mechanism. The nature of process properties and process migra-
tion modeling is selected in a way that can be implemented by the available information in operat-
ing system’s data structure. In this type of computing systems, traditional applications are used as
kernels of complex applications and scientific applications.

2. Related work
In this part, we have studied related works on improving and enhancing the performance of process
migration. All available activities can be classified into three classes (Bahena, 2014; Healy, Lynn,
Barrett, & Morrison, 2016; Milojičić, 2013; Rathore & Chana, 2014; Sandhya, Usha, & Cauvery, 2016;
Setiawan & Murdyantoro, 2016; Thakkar & Pandya, 2013; Zarrabi, 2012; Zhongyuan, Jianzhong,
Shukuan, & Qiang, 2015).

Class I: These are the operating systems that use multi-strategies for process transmission (mi-
gration). For example, RHODOS, which is based on microkernel (Healy et al., 2016) and message
passing. Since RHODOS can manage multiple strategies, each state uses an algorithm that has the
best effect on the improvement of the performance of system (Rathore & Chana, 2014). The logical
design of process migration management in this operating system is such that it uses Pre_Copy,
Total_Copy, and COR strategies based on performance and allowed time parameters (Medina &
García, 2014; Rathore & Chana, 2014).

MACH, which is also based on microkernel (Milojičić, 2013), is another example of Class I operating
systems. It has two tools for process transmission that enlists one of these two with a different pat-
tern. One tool is the Simple Migration Server (SMS) that uses COR strategy for process migration. The
other tool is the Optimal Migration Server (OMS) that provides user-level migration and supports
COR, Total_Copy, and Pre_Copy strategies (Milojičić, 2013).

The Class I operating systems contain more than one algorithm for the process migration man-
ager. The benchmark for these systems to select a specific algorithm is the time of process migration
trend. In these systems, the process migration manager chooses one of the migration algorithms
based on the efficiency and time allowed for the suspended process. In the systems listed in this
category, the centrality of deciding whether the selected mechanism is the only time remaining
process execution, or not. In these systems, the migration mechanism tries to manage the imple-
mentation process by modifying the migration algorithm so that the process would be executed and
completed at the specified time in the destination machine itself. The process migration manager
considers the process intended for migration to be an abstract process that lacks communication
and interaction with system and system environments and is the only standard that governs that
time.

Class II: These mechanisms are a combination of some strategies. They combine some strategies
to extract a united method for enhancing the performance and decreasing the disadvantages. Some
examples of these strategies have been described in previous studies (Thakkar & Pandya, 2013;
Zarrabi, 2012).

In Zarrabi (2012) uses a combination of Flushing, Post_Copy, and Pre_Copy for process transmis-
sion so as to achieve a logical cost and extract beneficial properties of each strategy (Zarrabi, 2012).
This mechanism tries to make a general strategy by gathering all outstanding features of the three
mentioned strategies. This mechanism is implemented in three phases: Pre-migration phase, migra-
tion, and post-migration. In the first phase, all address spaces of a process are transmitted to the file
server. In the next phase, there are two processes which shown the migrated process and the state
of the process are sent from source (host) to destination, and the process will continue running on
the destination machine. In the third phase, information of address space that is private for the
process is sent to the destination machine and other information is sent to file server. The migration

www.manaraa.com
Page 7 of 36

Mousavi Khaneghah et al., Cogent Engineering (2018), 5: 1458434
https://doi.org/10.1080/23311916.2018.1458434

time of this mechanism is similar to Lazy_Copy. Besides Pre_Copy and Total_Copy strategies, this
mechanism has no residual dependencies (Medina & García, 2014).

Studies (Bahena, 2014; Thakkar & Pandya, 2013) have represented a GALAXY distributed operating
system that uses a combination of Demand_Paging and Pre_Copy mechanisms. During process
transmission, the process is still running on the source machine, and the uninvolved memory pages
are transmitted to the destination. The process is then turned into a suspend state, and the state of
the process is transmitted to the destination. After that, the memory pages involved are transmit-
ted. After completion of the mentioned steps, the process will resume on the destination machine.

In this class, there are systems that try to create a mechanism by combining traditional mecha-
nisms for reducing process suspended time. In these systems, the created algorithms try to govern
the disadvantages of a traditional algorithm with the advantages of another algorithm. This indi-
cates that the criteria governing the algorithms used in this class system are the same as that used
in the traditional process of migration. In the systems created based on these mechanisms, con-
cepts such as dependency, inter-process communication type, and the ability to execute global ac-
tivity among the computing nodes are considered.

Class III: This class includes the mechanisms that are newly designed based on four basic strate-
gies to reduce their disadvantages. We can name Pre-record Algorithm (Zhongyuan et al., 2015) as
a good example of this class. This paper represents an algorithm named Pre_Record, which is de-
signed based on page faults, dependencies, and process suspending time indicators. Pre_Record
transmits the predicted demanded pages by calculating the process runtime difference on the
source and destination machines (node). This operation continues until the process is running on the
source machine (Zhongyuan et al., 2015). The operation ends when the process address space is
finished and the process is suspended. During the runtime, the process can access and observe some
parts of address space, memory pages, stacks, and files. When the process continues running on the
destination machine, it can rapidly access and observe that address space. The source stores mem-
ory pages and will send them after transmitting the kernel of address space. This algorithm is cate-
gorized by short suspended time and medium network traffic (Zhongyuan et al., 2015).

In this class, system parameters such as suspending time, dependency degree, and process trans-
mission errors are considered. Although the existing systems in this category are related to depend-
ency challenges, the challenges of communication and interactive interaction are also considered in
a number of cases. The most important challenge for these systems is to focus on the pursuit of a
single national activity. The formation of global activities in open computing systems makes it pos-
sible. In addition to the challenges, we need to consider the pattern of resource use.

2.1. Migration mechanism and its important parameters
Due to the importance of process transmission in distributed systems such as clusters, grids, peer-
to-peer and cloud computing systems, different strategies are used for process migration. Total_
Copy, Lazy_Copy, Pre_Copy, and flushing are four basic strategies in cluster computing system (Barak
& Shiloh, 2013; Liu, Jin, Xu, & Liao, 2013; Medina & García, 2014; Zarrabi, 2012).

2.1.1. Total_Copy
One of the most common strategies used for process migration is Total_Copy (Medina & García,
2014). Amoeba (Ziwisky, 2012) and Condor (Patel, 2015) are the operating systems that use this al-
gorithm for process migration. Figure 1 represents how this strategy transmits a process.

In Figure 1, at first, the process is suspended. The source machine transfers the process control
and execution state and then dispatches the communication links and any other buffered messag-
es. The source machine transfers the file descriptors, dirty file cache blocks, and pages related to
stack, code, and heap to the destination machine. Hereafter, all process information is deleted from
the source machine and the migrated process resume execution on the destination node. In this

www.manaraa.com
Page 8 of 36

Mousavi Khaneghah et al., Cogent Engineering (2018), 5: 1458434
https://doi.org/10.1080/23311916.2018.1458434

strategy, sending all the process information is always preferred to continue the process executions
(Medina & García, 2014).

One of the benefits of this strategy is the simplicity of implementation. When all the process infor-
mation is transmitted, it will completely omit the residual dependencies. In terms of the independ-
ence factor, this strategy supports the fault tolerance feature. This means that if the source machine
makes any mistake, then the migrated process can independently continue the execution without
having any distribution. It is an efficient algorithm for memory as it can transmit and release the
memory from source machine (Zarrabi, 2012).

Transmitting all address space will increase the freeze time and delay the response time of the
migrated processes to other processes. Also, it is completely clear that the more is the address
space, the more time will be spent. In message-based systems, high long response time will disturb
the whole system. While transmitting the whole address space in suspended time, no changes will
be observed in memory pages during the migration (Medina & García, 2014; Thakkar & Pandya,
2013).

2.1.2. Pre_Copy
This strategy was first used and designed in V operating system (Litton et al., 2016) for decreasing
the freeze time in Total_Copy strategy. Since all the interprocess communications in V operating
system is performed by message passing, Total_Copy could not respond the system and process
requirements. In this strategy, while the process is running on the source machine, some parts of
address space are transmitted (Medina & García, 2014; Patel, 2015). Figure 2 explains how this strat-
egy transmits the process?

Due to this strategy, source machine sends codes, stacks, and modified pages to the destination
machine while the process is still running on it. The modified pages belong to the stack, but when-
ever the code changed, the modified pages are sent to the destination machine. The information is
sent continuously until the number of pages stands over a threshold. After the process freezes, the
source machine transfers the File descriptors, dirty file cache blocks, and all other pages related to
stack, code, and heap to the destination machine. Hereafter, the migrated process resumes the ex-
ecution on the destination machine (Medina & García, 2014; Patel, 2015).

As shown in Figure 2, this strategy decreases the freeze time rather than Total_Copy. This reduces
the interprocess communication fault significantly. When the migration process finishes, the pro-
cess becomes completely independent of the source machine. Depending on the memory accessibil-
ity pattern, some memory pages may be sent to destination machine because these pages are

Figure 1. Process migration
using total_copy strategy (Hsu,
Peng, Chan, Slagter, & Chung,
2014).

www.manaraa.com
Page 9 of 36

Mousavi Khaneghah et al., Cogent Engineering (2018), 5: 1458434
https://doi.org/10.1080/23311916.2018.1458434

modified during the execution time. If these pages increase consumedly (so much), the action of
sending pages will never reach the set threshold, resulting in the failure of the migration process.
Although this strategy uses less freeze time than Total_Copy, it has total migration time compared
to Total_Copy strategy. This issue will add an overhead and decrease the ability of process migration
for supporting the load balancing. It also supports the fault tolerance as all address spaces are
transferred (Egwutuoha, Chen, Levy, Selic, & Calvo, 2014). If the address space size increases, the
time of migration will increase too. The execution of this strategy is completely independent of the
type of inter-process communication.

2.1.3. Lazy_Copy
Lazy_Copy strategies were first used in Accent operating systems (Zarrabi, Samsudin, & Wan Adnan,
2013) for transferring the minimum size of address space. This strategy is an instance of demand
paging approach that should support remote paging in the system (Zarrabi et al., 2013). This strat-
egy just transfers the process execution state and will send the address space on demand (Medina
& García, 2014; Patel, 2015). Figure 3 shows the steps of Lazy_Copy strategy transmission.

As Figure 3 indicates, the first process will be suspended. Execution and controlling states with
some parts of address space, file descriptors, and dirty file cache blocks will be sent to the destina-
tion machine, but in this strategy, code and the stack will not be transferred. After this transmission,
the migrated process will resume on the destination machine. If any page fault event occurs during
the execution, the needed codes will be sent to the destination. The destination machine can send a
request, and the required codes and stacks can be received from the source machine.

Figure 2. Process transmission
using pre_copy strategy (Chen,
2013; Hsu et al., 2014; Lei, Sun,
Chen, Wu, & Shen, 2017; Patel,
Chaudhary, & Garg, 2018).

Figure 3. Process transmission
using pre_copy algorithm
(Chen, 2013; Kashyap, Dhillon, &
Purini, 2014).

www.manaraa.com
Page 10 of 36

Mousavi Khaneghah et al., Cogent Engineering (2018), 5: 1458434
https://doi.org/10.1080/23311916.2018.1458434

In this strategy, the amount of transferred data is decreased, and freeze time will be less than that
of Pre_Copy strategy that prevents the transferring of the unneeded memory pages. This will reduce
the overhead and increase the performance of the load balancing. This strategy is completely inde-
pendent of the process size and modifies the memory pages that will not disturb the migration
functionality (Medina & García, 2014).

Residual dependency is one of the disadvantages of this strategy. The address space must be able
to access until the migrated process execution finishes on the destination machine. This disadvan-
tage will turn into a bottleneck when the migrated process had many transmissions. In this case, a
hierarchal page fault is needed to receive the demanded memory page, and if the source machine
mistook the strategy, it will indeed result in its failure (Medina & García, 2014; Patel, 2015).

2.1.4. Flushing
Flushing strategy is the first strategy to use a third entity for transferring. It was first used in Sprite
operating system (Peters, Rabinowitz, Jacobs, Gillett, & Fasciano, 2015), a file-based system. In this
strategy, a file server is added to the source and destination machine. The main aim of Sprite operat-
ing system for representing this strategy was to overcome residual dependency (Medina & García,
2014).

This strategy uses the concept of virtual memory in which it completely depends on how an oper-
ating system defines the virtual memory (Vyas, Maheta, Dabhi, & Prajapati, 2014). In Figure 4, the
transmission steps are shown.

As Figure 4 shows, the process is first suspended, and then the execution and controlling states
with brief information about processes, such as communicational links, buffered messages, file de-
scriptors, and dirty file cache blocks are sent to the destination machine. However, no parts of the
code, heap, and stack are involved in this transmission. All memory pages including the information
in the stack, heap, and cache block will be flushed from source machine to destination. When “con-
tinue message” is sent to the destination machine, the process resumes the execution. However,
when a page fault happens, the migrated process rapidly receives the demanded code pages from
the source machine followed by the receiving ability of the heap and stack pages.

Figure 4. Process transmission
using flushing strategy (Chen,
2013; Patel, 2015).

www.manaraa.com
Page 11 of 36

Mousavi Khaneghah et al., Cogent Engineering (2018), 5: 1458434
https://doi.org/10.1080/23311916.2018.1458434

This strategy has no residual dependency, and the freezing time significantly decreases compared
to the Total_Copy strategy. Flushing strategy is suitable for systems that use file passing as inter-
process communications. Hence, if this strategy is applied to operating systems based on message
passing when the freeze time is too short, it will not perform well, and the transmission may have
many overheads (Medina & García, 2014; Patel, 2015). On the other hand, using this strategy in op-
erating systems that are using File passing as interprocess communication requires implementation
of the concepts and mechanism related to file.

For speeding up the accessibility of memory pages while using a file server, the file system must
be optimal. As Sprite operating system uses file passing-based interprocess communication, the ac-
cessibility of files increases and page faults respond faster. This strategy is independent of the pro-
cess sizes, and the modified memory pages for process migration or the fault tolerance feature is
supported in such systems.

3. Basic concepts
In this part, the basic concepts of peer-to-peer computing systems have been studied using the
process migration mechanism and the global activity concept. Studying the concept of global activ-
ity enhances the ability to perceive the nature of cluster computing systems compared to peer-to-
peer computing systems. On the other hand, a mathematical model based on the global activity
concept in peer-to-peer systems is going to be presented by studying the process of migration
mechanisms.

3.1. Process indicator and parameter types influencing process migration mechanism
Choosing the right unit with the duty of determining the properties and type of candidate of the mi-
grating process is a crucial task. There are two common approaches for decide the unit; these ap-
proaches consider factors like when and where. The term “where” is used for destination and “when”
indicates the exact time of process migration. In the first approach, the process migration time and
destination machine indicate the parameters of the process type, which perform the duty of a load
balancer (Medina & García, 2014). In the second approach, the process migration management is the
determining factor of these parameters. The ruling policy beyond the process migration manage-
ment indicates the approach of this decision (Jianjun et al., 2015; Ziwisky, 2012). Along with deter-
mining and choosing the approach, the considered unit must be able to perform the following tasks:

(A) The considered unit must be able to bring up a set of indicators as migration parameters, and
they must be determined based on the process properties. These parameters must indicate
whether a process is required to migrate or not.

(B) The considered unit must be able to determine the execution time of migration and indicate
which events or process migration parameters are required to check whether a process should
migrate or not (Jain, Menache, Shepherd, & Naor, 2017).

(C) The considered unit must also indicate the acceptable resource properties in process migra-
tion. This unit must be able to describe the membered machines in the system based on their
acceptable resource properties for a successful computing activity. The acceptable resource
parameters should be in a way that the process migration management can map the proper-
ties and migration parameters among the mentioned sets, which determines the migration
destination (Hussain et al., 2013). In the cluster computing systems, the load balancer does A,
B, and C duties. In these systems, the load balancer selects acceptable response time as one
of the process migration parameters. In these computing systems, the process properties will
not change during the running time as all processes belong to a global activity. On the other
hand, the duty of computing systems (Duty C) is fixed and does not change during the sys-
tem’s running time because of the non-scalability of these systems. The load balancer, based
on static or dynamic policies, selects the load distribution time (Jain et al., 2017; Milani &
Navimipour, 2016) while the process properties change during the running time in peer-to-
peer computing systems. The changes in the properties of the process are completely based

www.manaraa.com
Page 12 of 36

Mousavi Khaneghah et al., Cogent Engineering (2018), 5: 1458434
https://doi.org/10.1080/23311916.2018.1458434

on the scalability and ability to define more than one global activity in peer-to-peer computing
systems (Hussain et al., 2013). So, the migration parameters can also change during the run-
ning time in peer-to-peer computing systems, and the changes in computing resources affect
the set of acceptable properties for the resources (Javanmardi et al., 2014).

In peer-to-peer computing systems, changes in both acceptable resource properties and migration
parameters result in process migration management and load balancer that are beneficial during
the process migration trend. The load balancer must concentrate on extracting acceptable resource
properties that can be extracted by the resource discovery. The process of migration management
must concentrate on the parameters set for migration. Related to the concept of peer-to-peer com-
puting systems like cluster computing systems, the duty of determining the migration time can be
passed onto the load balancer (Medina & García, 2014).

By selecting the mentioned scenario, the process migration management must determine the
required parameters to:

• Decide whether the process is required to migrate or not.

• Decide which strategy is suitable for the process of migration in a specific global function among
all the available strategies in cluster computing system.The definitions of the process migration
parameters must be based on the properties of the global activities based on the idea that these
parameters should be applied to global processes.

By studying the process migration strategies (Liu et al., 2013; Medina & García, 2014) and load bal-
ancing mechanisms used in cluster computing systems (Desai & Prajapati, 2013), the below param-
eters are finalized based on the type of processes and process transmission trend. Furthermore,
these parameters used in process migration management can be studied under two
classifications.

Class I includes the main properties during the execution time. These properties have meaning
and concept just during the execution time and cannot be evaluated in other instances. These pa-
rameters can also change during the running times (Katyal & Mishra, 2014).

(I) Interprocess communication number (IPC#): It describes the number of inter-process com-
munications of a process with other processes.

(II) Priority: It indicates the first and foremost execution of a process in a global activity rather
than other processes.

(III) MemoryRequest: It indicates the required memory of a process for completing its execution.

(IV) ResourceDependency: It illustrates which local or global resource is required by the process.

Class II includes the intrinsic properties that are completely fixed and do not change over time.
These properties are constant at all times (Katyal & Mishra, 2014).

 (I) Process size: The number of memory pages allocated to the process

(II) IPCtype: Its intended propose is to determine the kind of communications among processes. In
this paper, the IPCtype is limited to three types, i.e. file passing, message passing, and distrib-
uted shared memory

(III) Transparency: It indicates the process that is called by a nickname or address. When named
by its address, the process is fully transparent.

(IV) Reliability: It addresses whether the process can execute on all systems or not, and whether
the system is based on processing machine?

The set of these parameters is known as process descriptors.

www.manaraa.com
Page 13 of 36

Mousavi Khaneghah et al., Cogent Engineering (2018), 5: 1458434
https://doi.org/10.1080/23311916.2018.1458434

On the other hand, the process migration management should be able to describe the available
process migration mechanism in cluster computing based on the set of parameters. This issue helps
the system in determining the mechanism based on factors required in the migration mechanisms
in the cluster system.

Migration parameters were studied by Medina and García (2014), who classified the parameters
into three classes.

Class I includes time-related parameters, migration costs, and process-related properties. The
parameters that are important in choosing the process migration strategy because of the main rea-
son of creating different processes include the reducing freeze time (Jianjun et al., 2015; Medina &
García, 2014). They are defined below:

(I) Initialtime: The time spent during the process starting from migration until it again resumes its
execution on the destination machine.

(II) Totaltime: The time spent during the process starting from migration until the whole informa-
tion of the process has been sent to the destination machine.

(III) Freezetime: It is the duration when the process is suspended and the migrated process cannot
respond to the requirements.

(IV) Migratecost: It refers to the costs of transferring the state of a process.

(V) Memory Migratecost: It refers to the cost demand paging from process address space.

(VI) IPCtype: It chooses the strategy that is both suitable and influential.

Class II involves locality properties, which indicate the dependency of the migrated process to the
source machine. These properties are commonly named as “residual dependency,” and it means
that some parts of process information will stay on the source machine even when the process mi-
gration is completed. In this case, this machine can recover the process using the remaining infor-
mation on the source machine whenever the destination machine fails (Medina & García, 2014).

Class III includes the properties that are related to its transfer in accordance with the operating
system’s aim. In other words, the main aim of using a determined strategy is to achieve transpar-
ency and reliability during process migration (Tanenbaum & Bos, 2014; Ziwisky, 2012).

Process migration management must be able to describe the process descriptors in terms of the
global process parameters. In this case, both process descriptor and process migration mechanisms
must be the same and can be defined by the global computing activities. Process migration manage-
ment should be decided on the basis of the parameters of global activities, which require an exact
view of the global activity and its ruling properties.

3.2. Global activity
In peer-to-peer distributed computing systems, each computing node of the system (member) be-
gins to initiate a computational activity due to the decentralized nature of the distributed system.
This computational activity may have some requirements that cannot be fulfilled by the local com-
puting start-up machines. However, elements of the peer distributed computing counterpart sys-
tems are based on the mechanism, which discovers the resource and development of the system to
meet the demands of the created computational activity (Alghamdi, De Grande, & Boukerche, 2015;
Navimipour, Rahmani, Navin, & Hosseinzadeh, 2014). In this case, the page for computational ele-
ments responds at the system level and requests for processes in this computational activity. The set
of processes created in the verdict is related to the computational activity and is known as a global
activity. Each member of the Global Activities page carries out the part of the activity related to the
global activity with an intention to complete it within the page.

www.manaraa.com
Page 14 of 36

Mousavi Khaneghah et al., Cogent Engineering (2018), 5: 1458434
https://doi.org/10.1080/23311916.2018.1458434

For illuminating this issue, a peer-to-peer distributed computing system is considered (Khaneghah,
2017; Sharifi et al., 2010). The computational element “a” can start to compute a computational
activity. The existence of the set of requests in computational activity causes the resource manage-
ment to discover the resource that is capable of answering requests. This further causes the collec-
tion of processes related to the computing activity to be transferred to the new computing element
in order to continue the process, and add a new element in the page of the computational activity
created in the machine. Creating computing pages for the global activity using all the processes re-
lated to the activity is completed. According to the transmitted processes, these can be implement-
ed in parallel with each other. Therefore, a set of processes related to a global activity is running in
a page on global activity at a given time.

Processes related to global computing on a global activity page are the parts of the activity. These
processes result when a part or all of a global activity is running on a computing element, and there
is a process (or processes) in which the local computing element is capable of answering the re-
quests of that process (or processes). Moreover, the system management element is based on its
policies and has discovered the resource and developed a computational system to respond to the
process request (or processes). In this situation, the system management element adds to the sys-
tem’s new machine to move the processes requiring a new resource into the computing machine.
Moreover, the processes are transferred to the new computing machines due to the redistribution of
the process by the migration mechanism. If “W” represents the set of all processes related to the
global activity “I” in the system, then the member processes of W have certain properties that make
it possible to distinguish the local processes in the system. Equation (1) can express the generating
space of the computational processes.

As seen in Equation (1), the generating space of the computational processes is defined by the two
sets of Process, PRemain, which are of the type of data structures defined on the basis of the process.
These two sets are the kind of process whose information can be extracted from the data structure
of the process. As stated in the generating computing process space, [the] three RD, Migration, and
LD operators create the global process spaces based on [the] two sets of processes mentioned be-
fore. According to Equation (1), the global process spaces are described by five properties, i.e. IPC,
Usage, time, Resourcedependency, and Size. These five properties are considered by the nature of com-
putational processes in terms of the three LB, Migration, and RD operators that create the space for
computational processes. The IPC feature is a vector property, which indicates the situation of com-
munication between processes (processes) forming a global activity. Usage feature is a scalar prop-
erty, which indicates the average time usage of a CPU that comprise global activity in computing
elements. Resourcedependency feature is a vector property that indicates the relationship between each
process with the required resources for the global computing process. The Size feature is also a sca-
lar property that indicates the size of the global computing process.

The concept of Usage from process migration management viewpoint and the load balancer view-
point is different. From the load balancer viewpoint, Usage of a global process is the time usage of
central processing unit (or also the network bandwidth or memory allocation). From the process
migration management viewpoint, the concept of Usage is the modified memory pages on the
source machine. In process migration management viewpoint, the Usage concept includes the net-
work bandwidth, central processing unit’s allocation of source machine, and also the execution of
system call on the destination machine. When a global process begins to modify a memory page in
source machine, it means that all processes use destination processor, source processor, and the
network bandwidth.

The Resourcedependency concept from load balancer view is the resources required to continue the
execution. From process migration management’s viewpoint, the Resourcedependency concept

(1)
GlobalActivity:(Process, PRemain, IPC, Usage, Size, Resourcedependency, time < LB,Migration, RD >)

www.manaraa.com
Page 15 of 36

Mousavi Khaneghah et al., Cogent Engineering (2018), 5: 1458434
https://doi.org/10.1080/23311916.2018.1458434

emphasizes on the failed process transmission as to whether it can continue the execution or No.
The intended purpose of this issue is that if the source machine fails during the migration then
whether it can continue the execution of the migrated process on the destination machine.

The Time feature is a vector property that indicates the effective times on the process time. The
space that governs time is a composite space. In Equation (2), it describes the space of Time.

The concept of Time, in Equation (2), defines the three spaces of the process time and the time of
global operations. The operators of activity, process waiting, process migration, and process com-
munication can be defined as the concept of Time.

Consider computer A is a member of peer-to-peer distributed computing systems (Khaneghah,
2017; Sharifi et al., 2010). According to the capabilities of the machine and the policies for creating
a page related to the global activities of the system management element, the computational ele-
ment “an” is present at a specific moment in more than one global activity page. Cluster systems
have only one computational element, which can create global computational activity. In other
words, if Machine A is defined in the cluster system, then it is only present on the page of the global
activity. The presence of a machine in more than one global activity enables it to run on a computa-
tional element in more than one type of processes. This causes the system management element in
Machine A to have the global computing management mechanisms appropriate to the nature of
global computational processes. One of these global computing operations is the process migration
mechanisms.

Figure 5 indicates the position of the computing element “an,” which is shown at a given moment
in the peer-to-peer system in the context of global activities.

As shown in Figure 5, at the moment t = tz in the peer-to-peer system, the Machine A is present in
the page of three global activities, and the Machine B is present in the page of two global activities.
One of the global activities computed by Machine B is being executed, and another one is still com-
puting. The first global activity, which is represented by its near-dotted points, is formed in a comput-
ing element of the other member of the system and partly in Machine A. In case of the computing
element other than Machine A, the element ends when the computing ends. The second global ac-
tivity, which is represented by the dotted lines like Morse lines, begins in the computing element of
the peer-to-peer system member. Moreover, the Machine A leads to the end of the global activity
while the computing is partly completed. Third activity in a computational element of the system

(2)
Time: < timespace, timeglobal, timelocal,< Do, Waiting >,< Migrate, communicate≫

Figure 5. The condition of the
Machine A in the peer-to-peer
system in the field of global
activities (Khaneghah, 2017;
Sharifi et al., 2010).

Machine a

www.manaraa.com
Page 16 of 36

Mousavi Khaneghah et al., Cogent Engineering (2018), 5: 1458434
https://doi.org/10.1080/23311916.2018.1458434

member of the peer-to-peer system begins partly in Machine A and ends in the starting phase of the
global activity.

If the distribution status changes in the peer-to-peer system at t = tz + β, then it could be due to
the beginning or end of the global activity, and consequently the change can be observed in the
system status from the load balancer or system expansion.

Now Equations (3) and (4) are based on Equation (1) and the set of indicators describing the pro-
cess and migration indicators.

As described in Equation (3), it maps the process descriptors to the process generator space.
Information about the process descriptor parameters can be extracted from the structure of the
kernel operating system. The process migration for each global computing process attempts to cre-
ate a data structure corresponding to the generating space of global computing processes. In
Equation (3), transparency is in the form of a vector; hence, if it is equal to the processing address
then it is also equal to the negative vector, and if it is equal to the process name then it is equal to a
positive vector. In the case of a reliable variable, if the process is dependent on the machine then it
is equal to the negative vector, and if it is independent of the machine then it is a positive vector.

If IPC type variable is identical in both origin and destination machines, it is equal to a positive
vector; if not, then the vector is negative. A negative unit vector will be implemented for each source
machine memory requirement, and a positive unit vector will be implemented for each memory re-
quirement during the process migration to the destination machine. The process migration manage-
ment, after executing Equation (3), creates three vectors and two scalar values for each computational
process. If the information about each of the three vectors or two scalar values of the computing
process generating space in Map, as shown in Equation (3), is not complete, then the migration man-
agement will obtain the process of the information from the corresponding data structure.

In Equation (4), the process migration management maps the migration parameters to the pro-
cess generator space. In Equation (4), the three variables Initialtime, totaltime, Freezetime are mapped to
the time vector space. These three variables are actually vectors with a size equal to the weight of
the vectors, and their direction is always in the direction of the negative unit vector. The two varia-
bles, i.e. Migratecost, Memory Migratecost variables are mapped to the ResourceDependency vector space,

(3)

MigrationunitProcess
:
�
&[(IPC#time

t=NextMigration Load

t=Migrationload
→ IPCvector) as scaler]&

⎡
⎢⎢⎢⎢⎣

Average

⏞⏞⏞

Priority

→ Timevector as scaler]&

⎡⎢⎢⎢⎣

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

Memoryrequest
Direction =

Size=Request#

vector

→ Resourcedependency as vector]&[Resourcedependency

→ Resourcedependencyas Creator]&&[Size → size as creator]&[IPCtype

→ IPCvectoras vector]&[Transparency

→ Resourcedependencyas vector]&&[Relability

→ Resourcedependencyas vector]
�

(4)

Migrationunitmechanism:[[(Initialtime, totaltime, Freezetime)

→ timevector as vector]&[(Migratecost, Memory Migratecost)

→ Resourcedependency as vector]&[IPCtype → IPC as vector]]

www.manaraa.com
Page 17 of 36

Mousavi Khaneghah et al., Cogent Engineering (2018), 5: 1458434
https://doi.org/10.1080/23311916.2018.1458434

which is also a vector with weights equal to the size of the two variables, and their direction is also
always in the direction of the negative unit vector. The migration management is a process for shap-
ing the generating space of the characteristics of global computational processes for each cluster
process migration mechanisms, in addition to the usage of the mapping Equation (4), the informa-
tion contained in Section 3.3 is also used.

The process migration management, based on Equations (3) and (4) and the information in Section
3.3, will create two generating spaces. The first generating space is equal to that of the global com-
putational process. It is created for each computational process. The second generating space is
equal to that of the migration mechanisms and is calculated for each of the traditional process mi-
gration mechanisms.

3.3 Summarizing mechanisms based on the defined parameter
Table 1 summarizes the mentioned strategies based on five parameters: process size, interprocess
communication type, resource dependency, usage, and time bounding.

Table 1 indicates the usage parameter as mentioned in 3.2. The process migration view includes
network’s bandwidth and CPU usage (Ahmad et al., 2015). In process migration mechanisms, these
two parameters count the modified pages on source machine (Cano, Molinos, Nagarajan, &
Vijayakumar, 2015; Medina & García, 2014). When a process requires modifying the accessibility on
the source machine in process migration mechanisms, the performance of this activity is based on
the central processing unit and network’ bandwidth. As mentioned in 3.3.2, the Pre_Copy strategy
still executes on the source machine and also uses these parameters due to the transmitting pro-
cess to the destination machine (Ahmad et al., 2015; Cano et al., 2015).

The IPC parameter indicates the type of interprocess communication that is used in the system.
Flushing strategy requires a system that supports the concept of the file for process migration. If the
strategy is used on the systems that support the file concept, it demands special file mechanisms
(Zarrabi et al., 2013).

Parameter Resourcedependency from process migration view indicates the dependency of the process
to the source machine. One of the aspects of this parameter from process migration view is the abil-
ity to continue the execution of the process when the accessibility of source machine fails. Some
process type relations to the global activities are in a way that makes the process dependent on the
source machine. In this case, this strategy should perform the migration process in the peer-to-peer

Table 1. Modified using algorithms in clustering systems based on properties of process activity generating space
Process size (Katyal
& Mishra, 2014;
Medina & García,
2014)

IPC type (Medina
& García,
2014; Milani &
Navimipour, 2016)

Resourcedependency Usage Migration time
(Medina & García,
2014)

Time

Total_
copy

Is important No dependency No dependency (Medina
& García, 2014)

Not
important

High There are time
bounding based
network limitations (Me-
dina & García, 2014)

Pre_copy Is important No dependency No dependency (Medina
& García, 2014)

Is
important

Very high Time bounding based
on network limitation
(Medina & García, 2014)

Lazy_
copy

Not important No dependency Depends on source
machine (Chen, 2013)

Not
important

Low Time bounding based
on data’s dependency
(Chen, 2013)

Flushing Not important Depends on IPC type No dependency (Chen,
2013)

Not
important

Moderate Time bounding based
on data’s dependency
(Chen, 2013)

www.manaraa.com
Page 18 of 36

Mousavi Khaneghah et al., Cogent Engineering (2018), 5: 1458434
https://doi.org/10.1080/23311916.2018.1458434

system in such a way that the process dependencies can be managed. In Flushing strategy, the
moderate and management features will be advanced. Total_Copy and Lazy_Copy strategy, accord-
ing to all information transmission, must note the process size. The process migration time depends
on the transferred information between the suspending time and the execution time. Pre_Copy
strategy, while transferring all address space and multiple sending modified pages, need much more
time for migration (Cano et al., 2015).

4. MDPM mechanism
Due to current load state, load balancer decides to reload balance in peer-to-peer-distributed com-
puting systems. In these computing systems, process migration management should decide and
select a suitable mechanism, which is based on the five parameters related to generating space of
the global process. To overcome this issue, the process migration must be able to describe the mech-
anisms of process migration based on Equation (4). In addition, process migration must use the in-
formation mentioned in part 3.3 related to the process generator space. The main reasons for
emphasizing on migration mechanisms are the concepts of global activity and peer-to-peer comput-
ing systems. The P2P system discussed in this paper is computational type, and thus, the aim of
these systems is to execute each global activity in minimum time. For example, each indicated glob-
al activity mentioned in Figure 5 initiates a computing clustering system that can be implemented in
both centralized and decentralized manner, and is related to the global activity concept based on
the computing region creation mechanisms.

Computing region management uses the clustering management law to manage its own activi-
ties. So, adjusting and matching the migration mechanism related to the global process properties
must be based on a powerful mathematical model. In this paper, vector algebra is used as the math-
ematical model. By using this powerful tool, the process migration management begins to adjust
and match the properties of the sets of process descriptor and migration parameters to select the
best process migration mechanism for global computing process. This paper uses vector algebra for
describing the five elements in a process generator space as well as the mentioned mapping.

As mentioned in Equation (1), the process generator space is described by IPC, Usage, time,
Resourcedependency, and size of a process. Equation (3) explains how the process migration manage-
ment starts mapping the process descriptor parameters to the process generator space. Other re-
quired information for building process descriptor can be extracted from the data structure of the
operating system. As per Equation (4) and part 3.3, the process migration management begins to
build a new data structure for each computing region based on the previously discussed process
migration parameters. So, if the load balancing became unbalanced in time t = RLBj, then the pro-
cess migration base on W and V sets Equations (5) and (6) starts to reload the balance of the system.
So if the load distribution becomes unbalanced, the process migration management is decided by
considering the V and W sets Equations (5) and (6).

Equation (5) explains the description of the data structure of each global computing process based
on process generator space parameters and the ability to execute the migrated process. Each data
structure has three vectors (ResourcedependencyGDP, IPCGDP, and UsageGDP) and two scalar variables
(SizeGDP and UsageGDP).

(5)

W = Global Processdescription|∀i ∈ Global Processdescription∴GPDi =[{
Global ActivityCreatorSet, Global ActivityremainSet

}
,{

SizeGDP, ResourcedependencyGDP
, timeGDPset, IPCGDPSet, UsageGDP

}
, Migration

]

www.manaraa.com
Page 19 of 36

Mousavi Khaneghah et al., Cogent Engineering (2018), 5: 1458434
https://doi.org/10.1080/23311916.2018.1458434

Equation (6) indicates the data structure description of each migration mechanism based on five
parameters of process generator space for the migration.

In Equation (6), the intended propose of the data structure calculation for each process migration
mechanism is based on process generator space and process migration management controlling
duty, and is the special implementation of each process migration mechanism. In this paper, four
implementations of process migration mechanisms are discussed.

As indicated in Table 2, only one implementation is considered for each process migration mecha-
nism. The intended purpose of studying these mechanisms is to know about the process of imple-
menting the mechanism.

The UsageGDP. variable is a runtime variable, whose size is measured and calculated by the process
management. For extracting this variable, process migration management can calculate this varia-
ble by using the process for average allocated times. This process is a member of a global activity
based on the available information extracted from the local operating system’s data structure. In
MDPM mechanism, process migration management stores the process information and the average
allocated time to each process of the global activity in operating system’s data structures.

Generator space, as demonstrated on Equation (6), is defined on Initial ProcessState, next state,
Processstate sets. The first set indicates the state of the available process before starting the migration
operation, whereas the second set indicates the state of the available process after the migration
operation has been done. The state of the process explains the state of load balancing in the system,
allocated time to the process, and the waiting time of the process on the local machine. This data
structure is described by five process generator space parameters. The SizeGDP variable indicates
which related mechanism can be matched to which size of the processes. Table 3 shows the span of
suitable process size for each mechanism.

As indicated in Table 3, Total_Copy and Pre_Copy mechanisms have size limitations (bounding) as
an important parameter. In these two mechanisms, the process size limitation bounding is

(6)

V = Mechanismdesciption�∀i ∈ Mechanismdesciption∴MDi =

⎡⎢⎢⎢⎢⎣

�
Initial ProcessState, Next State Processstate

�
,�

ProcesssizeRange, ResourcedependencyCondition Set, timeconditionset, IPCConditionSet,

UsageconditionRange

�
,

Migration

⎤⎥⎥⎥⎥⎦

Table 2. List of mechanism implementations
Name of mechanism Implementation name Comments
Total copy Amoeba (Milojičić, 2013) • Does not support virtual memory concepts

• Is not a real-time operating system
• User level process migration
• Microkernel design
• Location independent addressing

Pre-copy System V (Litton et al., 2016) • Supports virtual memory concepts
• Suitable strategy for real-time activities

Lazy_copy Accent (Egwutuoha et al., 2014) • A low-cost migration using strategy
• Virtual memory stays at source machine
• Supports remote paging concepts

Flushing Sprite (Kashyap et al., 2014) • The selected IPC is file passing
• The main aim is to prove reliability
• Emphasizes on transparency degree and functionality

www.manaraa.com
Page 20 of 36

Mousavi Khaneghah et al., Cogent Engineering (2018), 5: 1458434
https://doi.org/10.1080/23311916.2018.1458434

dependent on the whole program size and bandwidth limitations for the network. Also, the time limi-
tation bounding in these two mechanisms depends on the acceptable migration time. Considering
Omega as the time of each migration and Teta as the total acceptable migration time,
“Size*Omega<<Teta” must be satisfied to use one of these two mechanisms for process migration.
In Total_Copy and Pre_Copy, process migration mechanisms and process size have direct effects on
acceptable migration time. In Lazy_Copy and Flushing strategies, process size limitation bounding
has less priority. In these two mechanisms, data dependency and inter process-communicating pat-
tern determine size parameter. In Lazy_Copy mechanism, dependency pattern between program
data characterizes size parameter limitation, whereas in Flushing mechanism, the interprocess com-
munication indicates the maximum size and spanning ability of the processes. In these two mecha-
nisms, i.e. Total_Copy and Pre_Copy, the process migration time must be less than the total
acceptable migration time.

Resourcedependency Condition Set Variable is a vector, which indicates the conditions of the mecha-
nism about the resource dependency and another process dependency. This vector can be calcu-
lated for each process m in which the process can be a computing one or the vice of a mechanism.
In each of V and W sets, Resourcedependencym is a finite vector, and it can be calculated from the
summation base in Equation (7) as shown below.

In Equation (7), Resourcedependencym vector is calculated by the summation of the process m depend-
ent on each resource elements, i.e. memory, input, and output files. Each of the four creating vectors
of vector Resourcedependencym, is an orthogonal vector. Considering the period [RLBi , RLBj] of time, in
which the load balancing state does not change, the Resourcedependencym vector is calculated from
Equation (7). For each device of mechanism “m” or process “m,” the Resourcedependencym vector is
only calculated once. If the load balancing state has been changed, then this vector must be
recalculated.

For each Resourcedependencymi in which i can be any of file, memory, process and I/O resources, if
process or the vice-process were in a way that requires resource i in source machine for continuing
the execution, the orthogonal vector with Resourcedependencymi vector must be added to a vector
that has the same direction with the negative unit vector. The length of this vector is equal to the
required time for executing this process in resource “i” on the source machine. If the process “m”
requires to access resource “i” on the destination machine, then the orthogonal vector with
Resourcedependencymi

 vector must be added to a vector that has the same direction with the positive
unit vector. The length of this vector is same as that of the Resourcedependencymi vector in the source
machine.

(7)

Resourcedependency
m

=

[
ResourcedependencyIPC

m

+ ResourcedependencyMemory
m

+ ResourcedependencyIO
m

+ Resourcedependencyfile
m

]

Table 3. Process size limitation for each mechanism
Implementation name Size condition Comments
Total copy There is a limitation in the size of the

process
Process size depends on the acceptable
migration time

Process size depends on the network
communicating limitations

Pre copy There is a limitation in the size of the
process

Process size depends on the network
communicating limitations

Lazy copy There are no limitations in the size of the
process

Transferring depends on the data
dependency

Flushing There are no limitations in the size of the
process

Inter-processing communication is the
priority

www.manaraa.com
Page 21 of 36

Mousavi Khaneghah et al., Cogent Engineering (2018), 5: 1458434
https://doi.org/10.1080/23311916.2018.1458434

In peer-to-peer computing systems, the reason for doing process transmission by process migra-
tion management is to reduce the response time. This system is related to the global activity and
must be executed in short time as possible. In peer-to-peer computing systems, if the long queue of
created processes or the CPU is busy, the process migration must rebalance the load of the system.
In other words, the main aim of the process migration is to achieve a computing unit. For each global
computing process, � vector can be defined as an ideal computing vector. Like Resourcedependencym,
this vector is an additional vector that can be calculated from Equation (8).

Vector � indicates the requirements of a global process of the local operating system, which the
global process executes. The direction of this vector is always positive and has the same direction
with positive unit vector having the length equal to all the required time of each resource from the
local operating system. In an ideal condition, the local operating system can respond to all the re-
quirements of the element created by � vector; however, in this case, the global computing process
will be completed on the local machine. The information about the � vector can be extracted from
each of created moments, and the migration time can be transferred from the source machine to
the destination machine. This data extraction is accessible by the data structures of the required
process.

The length of the Resourcedependencymi vector in [RLBi , RLBj] period is always changing. This issue
changes the Resourcedependencymi vector during the mentioned period, which happens during the
t = RLBj moment, where the load of the system remains unbalanced. The process migration manage-
ment requires the information about the Resourcedependencymi vector for each global process. For
estimating the Resourcedependencymi in the [RLBi , RLBj] period, the ALPHA vector based on Equation
(9) is being represented:

Equation (9) tries to find a good estimation for � vector by creating vectors of Resourcedependencym.
Alpha vector indicates how the Resourcedependencymvector was during the

[
RLBi ,RLBj

]
? Period. This

title is affected by the � vector, indicating the ideal state of the requirements of process “m” on the
local machine. This vector indicates which resources must be available in what capacity for the suc-
cessful execution of the process “m” in the local machine. On the other hand, Resourcedependencym
vector indicates the resource dependency of process “m” on different resources of source and des-
tination machine. If the estimation of � vector by the Resourcedependencym vector was in such a way
that it reduced the size of ‖� − AlphaResourcedependency

m

‖, then the resource dependency of process “m”
on the local machine can respond to all the requirements of the global process “m”. If the value of
‖� − AlphaResourcedependency

m

‖ was a big number, then the resource dependency of process “m” is in a
way that the local resources cannot respond to its requirements.

The Alpha vector describes the Resourcedependencym vector situation during the
[
RLBi ,RLBj

]
 period.

Process “m,” whether created on the local machine or in t = RLBi, is transferred to the local machine’
paying special attention to this issue is so necessary. For the process migration management unit,
the situation of the Resourcedependencym vector during the

[
RLBi ,RLBj

]
 period is important because

the process situation before the t = RLBi, was studied in the previous situation of enabling the pro-
cess migration management unit.

The IPC vector can be calculated by Equation (10) by using the summation of its constituting or-
thogonal vectors.

(8)� = [�Process + �IO + �file + �memory]

(9)

AlphaResourcedependencyk
=

[∑
k

(�k|Resourcedependencyk)Resourcedependencyk
]RLBj

RLBi

To somehow that

⏞⏞⏞
∴ k ∈ {Memory, file, IO, Process}

www.manaraa.com
Page 22 of 36

Mousavi Khaneghah et al., Cogent Engineering (2018), 5: 1458434
https://doi.org/10.1080/23311916.2018.1458434

Equation (10) indicates that the IPCm vector is affected by its constituting vectors. In this vector
space,IPCglobal indicates the connection between process “m” with other global process—IPClocal vec-
tor, which further indicates the connections and communication of process “m” with the local pro-
cesses except the local operating system. The IPCOS demonstrates the connections and
communications of the process “m” with the local operating system. By changing the constituting
vectors of the IPCmvector during the

[
RLBi , RLBj

]
period, the estimation of the vector from Equation

(9) cannot be described. The AlphaIPCm vector is introduced, which estimates the IPCm vector during
the mentioned period of time.

According to Equation (2), the time vector can be calculated by the summation of its constituting
orthogonal vectors. Equation (11) indicates the time vector:

Equation (11) demonstrates the time vector of the process “m,” indicating the rolling situation of the
time of the process “m” during the

[
RLBi , RLBj

]
period on the local machine. Timelocalm shows the

time duration of the process “m” in the local machine. The weight of this vector is equal to the allo-
cated time of the process m in the local machine, and its direction is always the same as that of
negative unit vector. The Timeglobalm vector indicates the time situation of process m in a system
that the global activity is executing.

The weight of this vector is equal to the time that process m requires for completing its executions,
and its direction is the same as that of the positive unit vector. TimeoperationmVector is the summa-
tion of the load balancing time, migration, discovery, and the allocation time of a resource. All their
directions are the same as that of the negative unit vector, and the weight is equal to the required
time for completing their own executions during the

[
RLBi , RLBj

]
 period. The timemigrationm vector is

a summation of three vectors.

The direction of freezetimem, Initialtimem, and the Migratetimem vectors are similar to that of the
negative unit vector, whereas their weight is equal to the allocated time for completing their execu-
tion by the process migration management. As the estimation presented for Resourcedependencym in
Equation (9), we represent another estimation of the time vector. Alphatimem Vector is an estimation
of the process “m” vector during the

[
RLBi , RLBj

]
period.

According to the represented information about the Usage and size variables, the given informa-
tion in the Table 3 and the estimated vectors in the t = RLBj, the process migration management for
each global process and mechanisms in Table1 has the set of information
< AlphaResourcedependency

m

, AlphaIPCm
, Alphatimem

, Usage, Size >. The calculated information are about

the situation of the global process and mapping state to each mentioned process migration mecha-
nisms in cluster computing system during the

[
RLBi , RLBj

]
 period of time.

Considering the process migration management for process migration operation, it selects the
global process ξ. In this case, the process migration management uses Equation (12), and the infor-
mation was given in the Table 1, which can decide which process migration mechanism is suitable
for the current migration operation.

(10)IPCm =

(
IPCglobal + IPClocal + IPCOS

)

(11)

Time
m
=

(
Timelocal

m

+ Timeglobal
m

+ timeoperation
m

)

||||timeoperationm =

(
Timemigration

m

+ Timeloadbalancing
m

+ timeRD
m

+ timeAllocation
m

)||||
timemigration

m

=

(
freeze

time
m

+ Initialtime
m

+Migratetime
m

)

www.manaraa.com
Page 23 of 36

Mousavi Khaneghah et al., Cogent Engineering (2018), 5: 1458434
https://doi.org/10.1080/23311916.2018.1458434

Equation (12) begins to calculate the angle along �������������⃗AlhpaX𝛾
 and �������������⃗AlhpaX𝜉

 vectors for each
Resourcedependency, IPC, and Time vector property. In the Equation (12), cos ρx, is a variable between 0
and 1. If we consider only one property of set X, then it is affected by the process migration opera-
tion. The value of the cos ρx is 0, which means that the γ mechanism is the most suitable for process
migration of global process ξ. �������������⃗AlhpaX𝛾

 and �������������⃗AlhpaX𝜉
 vectors have the same directions. If cos ρx has

the value besides zero, the WX factor indicates whether the γ mechanism is suitable for this migra-
tion operation or not. The WX factor can be calculated by the Equation (13).

The WX factor indicates the importance of the property X for the execution of the global process. For
calculating this factor, we can use the kernel data structures of the operating system. Moreover about
the IPC property, the WX factor indicates the required time for executing the IPC divided by the whole
execution of the process ξ in the local machine. About the Time property, the Wx factor indicates the
allocation time to global process ξ for migration. The WX factor of all the information about the process
migration of global process ξ are available, then the process migration management divides the aver-
age required time for process migration as a type of the ξ global process within the whole execution
time for the processing of the global process ξ, and finally calculates the WX factor. If the information
about the ξ types of global process are not available, the WX factor is considered to be equal to 1. About
the Resourcedependency property, the WX factor indicates the number of responded resources by the local
operating system divided by the whole number of resources denoted by the global process ξ.

The result of Equation (12) is a number between 0 and 1. Being a part of the result of Equation (12)
means the mechanism γ is not suitable for the process migration ofξ. Although Equation (12) deter-
mines whether the mechanism γ is suitable for process migration of ξ or not by only considering one
property, this equation considers that there is only one property in the set X that determines the
suitability of the mechanism. This issue happens when the process migration management consid-
ers all five AlphaResourcedependency

m

, AlphaIPCm
, Alphatimem

, Usage, Size > properties for the process mi-

gration using the mechanism�. Equation (14) represents a global function for deciding the suitability
of each mechanism.

In Equation (14), � variable is a scalar variable and has the value between 0 and 1. If the value of the
variable ϑ was zero, the γ mechanism is the most suitable mechanism for this migration operation,
and if the value was 1 then the γ mechanism is not suitable for this migration operation. Process
migration management can decide the suitability of mechanism γ for the process�. By using the
Equation (14), a threshold can be represented for process migration of the process ξ during the
mechanism�. This issue can be set by the manager and calculated by the results of evaluation.

5. Evaluation
In this paper, a distributed peer-to-peer computing system (Khaneghah, 2017; Sharifi et al., 2010),
which can create computing regions for managing the special resource, was used to evaluate the
represented mechanism. The computing regions are made logically and include numerous

(12)

�
∀𝜉 ∈ Global Activity and𝛾 ∈ Cluster Migration mechanism

�
:

W
X
.

⎡
⎢⎢⎢⎣

���� �������������⃗Alhpa
X𝜉

���.
��� �������������⃗Alhpa

X𝛾

���. cos 𝜌x
�

��� �������������⃗Alhpa
X𝜉

���.
��� �������������⃗Alhpa

X𝛾

���

⎤
⎥⎥⎥⎦
∴X ∈ {Resourcedependency, IPC, Time}

(13)
Wx =

XOperation time

�operation time

(14)
� =

�∑
i WXi

cos �Xi +
Size

Max SizeRange
. Usage

Max Usagerange

�

5
�X ∈ {Resourcedependency, IPC, Time}

www.manaraa.com
Page 24 of 36

Mousavi Khaneghah et al., Cogent Engineering (2018), 5: 1458434
https://doi.org/10.1080/23311916.2018.1458434

machines have the capability of responding to I/O, process, file or memory requirements for many
global activities.

Due to kernel-level implementation, the process manager mentioned in (Khaneghah, 2017; Sharifi
et al., 2010) is involved in the collection and gathering of information about the functionality, nature,
and behavior of the process. This information enables the MDPM mechanism to select the suitable
mechanism for process migration. The (Khaneghah, 2017; Sharifi et al., 2010) operating system has
extended data structure compared to than the UNIX system V (Spinellis, 2017). The data structures
of (Khaneghah, 2017; Sharifi et al., 2010) operating system can store vector-based information and
thus, this process can define in the vector-based model. The Oasis concept in (Khaneghah, 2017;
Sharifi et al., 2010) enables the complete and pure history of each process.

For evaluating the MDPM mechanism, the computing regions in this peer-to-peer computing sys-
tem (Khaneghah, 2017; Sharifi et al., 2010) are involved in the processing of three global activities
concurrently. A total of 40 machines are involved in this computing region to process MM5 (Liu,
2015), WRF (Krishnan, Veeravalli, Krishna, & Sheng, 2014), and Charm (Mendygral et al., 2017)
applications.

The MM5 and WRF programs as the mainstream software of the Meteorology and Charm software
are considered as one of the main applications of the Molecular Dynamic domain. Each of the listed
software applications needs to be responded as quickly as possible. Due to the high utilization of
these software systems, various traditional cluster computing systems have been configured to run
them; the results of the traditional cluster computing applications are easily accessible. The govern-
ing model of the behavior of the computing processes of the named software is accessible due to
multiple performances. In the case of the MM5 software, due to the existence of information about
the various implementations of this software, it can be accurate about the status of its processes at
runtime. Conventionally, the applied science and technology applications in the field of meteorology
are used as scientific and applied software used to evaluate the function of high performance com-
puting systems. Most of the software in this domain either emulate the MM5 pattern or the WRF
pattern. The reason why Charm software is considered is its scientific and practical nature. This
software is considered as one of the most important softwares in the field of Molecular Dynamic,
which is used by various fields of science, and is considered as an example of scientific and applied
software. The distributed peer-to-peer computing system is running on the named software
simultaneously.

The process migration management involves four basic strategies: Total_Copy, Pre_Copy, Lazy_
Copy, and Flushing.

The main purpose of the evaluation in this paper is to examine using a single mechanism or using
a multiple mechanism like MDPM for process migration in Distributed Exascale or in distributed peer
to peer computing systems. The main purpose of any kind of computing system is to run the scien-
tific and applied program in the shortest possible time. The time required to execute the activities
related to the element of computing system management in the decree is the time to increase the
time of the implementation of the scientific and applied program. Among the components of the
computing system management, the time needed to execute activities related to the process man-
agement migration element is not due to the fact that, during the execution of activities related to
this element, there is no access to one (or more than one) process. More tangibly, it increases the
time of the scientific and applied program. In addition, due to the fact that there is no possibility of
achieving one (or more than one process) during the implementation of the processes related to the
process migration management element, it may be a problem in the implementation of other exist-
ing processes. The system will increase the time to run the scientific and applied program. Therefore,
a mechanism for the process migration is a suitable process that can be transferred in its shortest
time based on the nature of the process and the proposed indicators to describe the process
status.

www.manaraa.com
Page 25 of 36

Mousavi Khaneghah et al., Cogent Engineering (2018), 5: 1458434
https://doi.org/10.1080/23311916.2018.1458434

In the MDPM mechanism, based on the formulas describing the status of the process migration
engine Equation (6), as well as the generalized computational process state descriptor formula
Equation (5) about which mechanism is used by the four mechanisms used in traditional computing
systems, decisions are made to migrate processes that are most adapted to each other. So the most
important variable to be considered in the experiments in this section is the time it takes to transfer
the process.

In this evaluation, the computing regions have been studied in two states.

In the first state, the process migration management uses only the Lazy_Copy mechanism for
process migration. Although the process migration unit can use all the four basic mechanisms for
process migration operation, we have selected the Lazy_Copy mechanism because of its perfor-
mance. The Lazy_Copy mechanism has also been chosen because of the commons of using this al-
gorithm among clustering systems while processing named programs. It should also be noted that
the Lazy_Copy mechanism includes the concepts of Total_Copy and Pre_Copy mechanisms. In the
Flushing mechanism, the time of responding in inter-process communication may be included as
the process migration time.

The reason for focusing on the Lazy_Copy mechanism is the use of this mechanism in traditional
computing systems. This mechanism has the features of other triple mechanisms. On the other
hand, the main goal of this mechanism is to reduce the response time. For this reason, in this paper,
in the first state the considered mechanism is Lazy_Copy mechanism. However, the peer-to-peer
manager (Khaneghah, 2017; Sharifi et al., 2010) has the ability to perform the first state with each
of the four mechanisms used in traditional computing systems.

In the second state, the MDPM mechanism has been used by the process migration management
in this computing region.

The experiment is based on the actual function of the process migration. The experiment attempts
to examine a situation in the system in which there is an occurrence that results in the activation of
the process of migration management element. For this purpose, there is a situation in the system
that a computing nodes are running only one or two global activities (corresponding to the applica-
tion MM5 and WRF) and the third overall activity (corresponding to the Charm application) while the
system is started. Starting the third global activity will lead the load of the system be unbalanced.
This change in load status of the system causes the load distribution to invoke the process migra-
tion. The process migration in the first scenario uses only the Lazy_Copy mechanism to transfer any
process regardless of process characteristics. The process transmitted by the process migration can
belong to any of the three global activities associated with the applications MM5, WRF, and Charm.
In the second scenario, according to Equation (5), it decides on the nature of the process, and given
that the system describes the process migration mechanisms based on Equation (6), it is about what
mechanism is suitable for the transfer of the process, to make the most suitable choice.

In time t = tɛ, the load distribution of the system is unbalanced because of the creation of a new
global activity. Due to the reducing response time policy in the system level, the process migration
management begins to select a set of processes required for process migration. The activities of
creating new global activities in the computing region and unbalancing the system’s load balance
occurred for 25 times.

The reason for the repetition of the test 25 times is the nature of the system’s stability. If the test
is repeated for 25 times, then the conditions governing the test are in the state of equilibrium. In a
number of repetitions 25 times, almost all patterns of process migration are studied. The reason for
this is due to the number of computational member machines and the pattern that governs the
computing processes of MM5, Charm, and WRF software in clustering systems. if there is only one

www.manaraa.com
Page 26 of 36

Mousavi Khaneghah et al., Cogent Engineering (2018), 5: 1458434
https://doi.org/10.1080/23311916.2018.1458434

execution of computing processes of MM5, Charm, and WRF software on the experimented comput-
ing region, all stated about the process migration are studied.

Each time, the load balancer in the first state and load balancer with the process migration man-
agement in the second state began to select the migration required processes. For evaluating the
performance of Lazy_Copy and MDPM mechanisms, we have studied machine number 4.

In order to evaluate the function of the MDPM mechanism in relation to the Lazy_Copy mecha-
nism, based on the two scenarios, each computing node as the member of computing region can be
studied. On the basis of a random mechanism, one of the member systems of the system, where it
is possible to turn the machine’s situation, is chosen from the performer of two general activities to
three global activities. In this experiment, based on the random mechanism and according to the
stated condition, machine number 4 was selected.

Figure 6 indicates the number of global processes and the number of selected processes for
migration.

Figure 6 shows the number of processes selected by each of the two Lazy_Copy and MDPM mecha-
nisms for the process migration, as compared to the total computing processes present in machine
number 4. On average, at each retest, the MDPM mechanism, 7.24 processes, and the Lazy_Copy
mechanism consider 7.8 processes were chosen for process migration as candidate processes. On
average, 28 global activities are running at each test in machine number 4. This means that the
Lazy_Copy mechanism typically has 27.8% of the processes and the MDPM mechanism, accounting
for 25.7% of the running computing process as the candidate processes for process migration. The
reason for this, is the mathematical model, determining the procedure as a candidate for process
migration in the MDPM mechanism. In the MDPM mechanism, based on Equation (5), each compu-
tational process is described based on five effective parameters in the process transmission. At the
designing time of the system, based on Equation (6), each of the four traditional process migration
mechanisms has been redesigned according to the effective parameters in the process migration
and based on the concept of global activity. The use of two Equations (5) and (6) makes the MDPM
mechanism, for each of the 28 computing processes, characterized by a precise description of (a)
based on five parameters affecting process migration, (b) based on the role of the process in the
global activity. Then, the MDPM mechanism decides on what kind of process migration mechanism
is appropriate based on Equations (12) and (14). The reason of the difference in the number of can-
didate processes between the MDPM and Lazy_Copy mechanism, refers to the nature of these two.
In the Lazy_Copy mechanism, during the transmission, the control states and process execution are
transferred and the pages of the address space are not transmitted until page-fault occurs.
Therefore, it can be argued that the initial decision criterion of this mechanism is influenced by the
size of the control and execution state of the process. This is while the MDPM mechanism uses a five-
variable function to decide whether a process is being nominated for transmission or not?

As Figure 6 demonstrates, when the number of studies increases, both MDPM and Lazy_Copy
mechanisms select an equal number of processes for migration depending on the load balancer. In
both mechanisms, the load balancer should rebalance the load of the system according to the new
global activity’s creations. Due to the reducing response time policy, those processes with more
waiting time are selected.

As Figure 6 indicates, the 25-repeat test of the standard deviation of the MDPM mechanism, 4.15
and the Lazy_Copy mechanism, is 4.02. The reason for this is the nature of the implementation of the
MDPM mechanism. The MDPM mechanism based on information gathered, global activities’ data
structure initiates a model governing the five parameters that affect process migration. The MDPM
mechanism, based on this information, defines process migration patterns. This is in the sense that
the MDPM mechanism, based on the information given above, indicates that if the status of five-
parameter parameters describing the state of the global computational process is in line with what

www.manaraa.com
Page 27 of 36

Mousavi Khaneghah et al., Cogent Engineering (2018), 5: 1458434
https://doi.org/10.1080/23311916.2018.1458434

pattern, then decide what kind of process migration mechanism is suitable for the selected process
based on decision-making structures filled before. As the number of experiments increases, the
standard deviation of the MDPM mechanism decreases. The reason for this is the nature of repetitive
activities in scientific and applied applications such as MM5, WRF and Charm. This suggests that: (a)
If a specific pattern cannot be found in the context of the five-dimensional parameters affecting
process migration, (b) the repeatability of activities related to the program, then the efficiency of the
MDPM mechanism decreases.

In this evaluation, processes numbered 117 and 225 on machine 4 have been studied.

To examine the time independent variable, one can consider the status of each candidate process
for process transfer by the process migration manager element. In this paper, a random mechanism
was used to select the process, therefor based on the random mechanism, processes 117 and 225
were selected. The process numbering is based on the specific ID assigned to the global activities by
the computing system manager.

Processes numbered 117 and 225 are involved in two separate global activities.

Process number 117, is related to the scientific and practical application MM5, and process num-
ber 225 is related to the scientific and applied program Charm.

In Figure 7, the situations and resource requirements of resource dependency have been studied
for the two named processes.

One of the most important challenges in process migration that causes the process migration
trend fails is the change in the dependencies of the process being transmitted to the source ma-
chine. The test results shown in Figure 7 are for the MDPM and Lazy_Copy mechanism to check this
situation. When the process is chosen for being transferred in a computing node of the system, ex-
cept in the Total_Copy mechanism, in other mechanisms, the process dependency to the source
machine is considered as a bottleneck to continue the process of running the activity.

In mechanisms used in traditional computing systems such as Lazy_Copy, Pre_Copy and Flushing,
due to the lack of one-time process transmission and the gradual transfer of process from the source
machine to the destination machine, a concept known as the status of source machine became
important. In traditional cluster computing systems, the probability of occurrence of a change in the
state of the source machine, except for the failure of the source machine, is very low. The reason of
this issue is the functionality of the load distribution and process migration. In the traditional cluster
computing systems, at the starting time of the process migration trend, the load distribution, due to
having a precise view of the status of resources and processes in the system, manages to prevent

Figure 6. The number of global
processes on machine 4 and the
number of selected processes.

0
5

10
15
20
25
30
35
40
45
50

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425

Pr
oc

es
s

#

Event #

Selected and Total Process

Total Process

Process Selected Load Balancing

Process Selected MDPM

Linear (Process Selected Load
Balancing)

Linear (Process Selected MDPM)

www.manaraa.com
Page 28 of 36

Mousavi Khaneghah et al., Cogent Engineering (2018), 5: 1458434
https://doi.org/10.1080/23311916.2018.1458434

events that cause the process state to be changed in the local computing node. On the other hand,
in traditional cluster computing systems, only one and in a number of situations two variables of
process size and time are considered as factors affecting process migration. The existence of a lim-
ited number of factors influencing process migration makes the load distribution be able to create
controlling structures on the named factors, when the process migration trend is being done.

In distributed Exascale systems, the high probability of the occurrence of a dynamic and interac-
tive nature and the lack of precise view on the status of processes and resources in a system by the
load distribution may lead to inform a situation, causing the status of the source machine be
changed. Changing the status of source machine may happen in two ways: (a) changing the status
of the process; (b) changing the status of the factors affecting the process; dynamic and interactive
nature of processes may lead the state of the process to be changed, this change may let the pro-
cess migration be failed or need to change the process migration mechanism or even failing to meet
the requirements of the process in the chosen destination machine. In changing the status of factors
affecting process migration, it is also possible that each of the five factors affecting process migra-
tion is changed in such a way that each of the three situations mentioned is created. In the exami-
nation shown in Figure 7, the occurrence of each of the three situations in a distributed peer-to-peer
system is examined.

In peer-to-peer computing systems, conventionally, the destination machine is also part of the
computing system, so the possibility of the occurring the dynamic and interactive nature among the
process (or processes) always exists. The occurrence of a dynamic and interactive nature in the des-
tination machine change the state of the computing nodes, and consequently the state of the pro-
cesses and resources in the computing nodes. In the destination machine, the occurrence of a
dynamic and interactive nature causes the state of the processes to interact with the source ma-
chine or source owner node. In any case, the occurrence of a dynamic and interactive nature may
cause the selection of the destination machine to be violated for process migration, or the comput-
ing node does not have the capability to execute the transferred process, which itself results in the
creation of a process migration array. From the point of view of the process migration, each destina-
tion machine is described based on five factors that affect process migration. When the status and
operation of the processes in the destination machine changes, from the perspective of the process
migration, these changes became important when it changes each of the five factors affecting the
process migration. This change in status may lead to the lack of meaningful process migration or the
need to change the process migration mechanism. In the test shown in Figure 7, in addition to ex-
amining the three modes of the target machine, we examine the occurrence of each of the two situ-
ations in peer to peer computing systems and also distributed Exascale system.

As Figure 7 indicates, the patterns of resource requirements for both the processes are completely
different. In the same period, the number of resource requirements of process 117 is more than that
of process 225. On the other hand, at the beginning of the evaluation, the number of resource re-
quirements of process 117, which the local operating system could not respond, was more than this
type of requirements of process 225. While the number of resource requirements of process 117
during the time had decreased however time elapsed and more times overloads. The number of re-
quest process 117 that cannot respond to the local operating system reduced compared to that of
process 225. Similarly, the sizes of resource dependency vectors of both the processes 117 and 225
are different. In a statistical experiment, the resource dependency vector of process 117 was found
to be smaller than that of process 255. In experiment 19, the resource dependency vector was equal
for both the processes, and after this experiment, the resource dependency vector of process 117
became larger.

For analyzing this situation, we need to check the resource requirements of processes 117 and
225. The other available global processes in the system, until the experiment 19, required access to
the process 117 or shared data with this process placed in the local machine. After experiment 19,
the ruling pattern changed in our peer-to-peer distributed computing system and the processes

www.manaraa.com
Page 29 of 36

Mousavi Khaneghah et al., Cogent Engineering (2018), 5: 1458434
https://doi.org/10.1080/23311916.2018.1458434

related to the process 225 located on the local machine. The application of this change affected the
MDPM mechanism. This mechanism decreased and increased the size of resource dependency vec-
tors of process 117 and process 225, respectively.

During the test shown in Figure 7, in Process 117, in six times from the 25-time test, the request to
access the resource in the target machine was not failed, so if the process migration used the Lazy_
Copy mechanism, this mechanism was carried out successfully due to the fact that the destination
machine was not changed. In 19 other experiments, the occurrence of a dynamic and interactive
nature in the source machine has made the process 117, requiring access to new resources. In this
19-time experiment, the occurrence of a dynamic and interactive nature by the process migration
has made it possible for the five factors affecting the process migration to change on the source
machine. The test shown in Figure 7, about process 117, illustrates the situation where the change
of factors does not cause the process migration to be canceled or the selected destination machine
changes. This test also shows situations of the process migration mechanism that needs to be
changed. The summation of five factors affecting the process migration in the source machine, after
the occurrence of a dynamic and interactive nature, has become such that it is no longer possible to
use the Lazy_Copy mechanism. In peer to peer system used for the experiment, the concept of com-
puting region is used. In each computing region, the member nodes of the region have a relative
advantage in responding to requests for processes in a given type of resource. In experiment num-
ber 17, the occurrence of a dynamic and interactive nature has caused a sequential change in the
source of the machine related to processor number 117. Using the Lazy_Copy mechanism makes
hierarchical page faults, so the process migration mechanism has changed to flushing.

In each of the 19 trials related to Process 117 shown in Figure 7, the occurrence of a dynamic and
interactive nature by Process 117 causes the dependence vector of process 117 to be modified and
changed.

In the experiment shown in Figure 7, about the process 225, 25 times the test, the condition of
changing the destination machine has not happened in eight times of repetition. Stability the status
of the destination machine has made the Lazy_Copy mechanism run smoothly. In 17 tests, the oc-
currence of a dynamic and interactive nature in the selected destination machine for the 225 pro-
cess has led to apply changes on five effective factors in the process migration in the destination
machine. Changing the factors affecting process migration in the destination machine causes the
Lazy_Copy mechanism to be challenged. For example, in Test No. 12, there is a process in a destina-
tion machine that has a dynamic and interactive nature. Changing the status of the five factors
causes the four requests to be created by process 225, which changes the dependency vector of
process 225. This change of the dependency vector of process 225 causes the Lazy_Copy mecha-
nism not be able to be used. One of these requests makes the 225 process need to transfer the entire

Figure 7. Resource
dependency’s situations of
processes 117 and 225.

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

N
um

be
r

#

Event #

Resource Dependency

No Resource Request 117

Reource Fail 117

Resource Dependency Vector
Value 117

No Resource Request 225

Reource Fail 225

Resource Dependency Vector
Value 225

Linear (No Resource Request 117)

Linear (No Resource Request 225)

www.manaraa.com
Page 30 of 36

Mousavi Khaneghah et al., Cogent Engineering (2018), 5: 1458434
https://doi.org/10.1080/23311916.2018.1458434

address space. In this case, the Lazy_Copy mechanism cannot be used as an efficient mechanism.
The MDPM mechanism, in this situation, by changing the process migration mechanism from Lazy_
Copy to Total_Copy, allowed the entire address space of process 225 to be transferred

As shown in Figure 7, two processes No. 117 and 225, in the number of requests, as well as the
number of fail-access requests in access to resources when the number of experiments increases,
the named processes are able to obey a unite mechanism. The only difference between the two
processes 117 and 225 is the dependency vector of these two processes.

The time of execution of process 117was high before experiment 19, but for process 225, the ex-
ecution time was high after experiment 19. This means, when the resource dependency increases,
the Lazy_Copy mechanism cannot response properly. This occurs when the MDPM mechanism was
used in the Flushing mechanism before experiment 19 and Lazy_Copy mechanism was used after
experiment 19 for process 117.

Figure 8 indicates the execution time of process 117.

Figure 8 illustrates the execution time of Lazy_Copy, the time needed for process migration using
the MDPM mechanism, the average time of execution of process 117 in computing system before
executing on the local machine, and the time needed for completing the process on the local
machine.

In a test with the results shown in Figure 8, Process 117 is considered as an example of managed
processes by both the MDPM and Lazy_Copy mechanisms. The reason for choosing process 117 is
because of having information about its implementation in the previous test, and any other process
in the system can also be studied. In this experiment, four indicators have been analyzed and evalu-
ated. Indicators of the time estimation about the program in the local machine, of the 117 process
in the total national activity, the estimated migration time by the MDPM and Lazy_Copy mechanism
in this experiment have been discussed.

In eight-time repetition from the whole experiment, the time of execution MDPM mechanism was
more than that of the Lazy_Copy mechanism. During this repetition, the MDPM mechanism needed
an average of 35 more time units compared to the Lazy_Copy mechanism. The most significant title
about these eight experiments is their distribution type among the whole experiment. In the 8-times
repetition, five repetitions were before the experiment 11. This is because the MDPM mechanism
needs to gather information from the data structures of the kernel operating system for deciding a
suitable mechanism to transfer a global process.

Figure 8. Time of processing
process 117 for each 25 times.

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

T
im

e
(q

)

Event #

Time for Process 117

Time need in
Local Mchine

MDPM Time
Estimated

Average time
Global

Lazy Copy Time

Linear (MDPM
Time Estimated)

Linear (Lazy
Copy Time)

www.manaraa.com
Page 31 of 36

Mousavi Khaneghah et al., Cogent Engineering (2018), 5: 1458434
https://doi.org/10.1080/23311916.2018.1458434

The Lazy_Copy mechanism is not a history based mechanism and does not gather information.
This mechanism, for each process migration, ignores all previous operations. In comparison, the
MDPM mechanism, according to the concept of global activity, stores related information on the
data structures of processes and uses this gathered information for each process migration require-
ments. The Flushing mechanism was the primary mechanism chosen by the MDPM mechanism, but
the MDPM mechanism has no information about the process 117. During the experiments 11 to 19
and 22 to 24, the execution time of MDPM was less than that of the Lazy_Copy mechanism. This is
because the selected mechanism was equal to the Lazy_Copy or Flushing mechanism after the ex-
periment 19.

Another reason for this issue is the gathered information about the destination machine and pre-
vious migration operations. In experiments 20 and 21, both mechanisms use the same strategies;
the reason is the system’s situation, dependency of process 117 on other processes, and the process
pattern state, which is related to the global activities of which process 117 is also a member.

As shown in Figure 8, the MDPM mechanism needs less time for process migration compared to
Lazy_Copy mechanism. At the beginning of the experiment, the MDPM mechanism required more
time than the Lazy_Copy mechanism because of the MDPM requirements of gathering information
about the process 117 and also the analysis of global activity’s state. In the MDPM mechanism, the
time of process migration reduces over time because the mechanism stated in the equilibrium situ-
ation extracted the ruler pattern on global activities that involves process 117.

Extracting the ruler pattern enables the mechanism to decide a suitable mechanism for process
117. The differences in execution times between MDPM and Lazy_Copy mechanisms on the later
experiment is because of the concept of Lazy_Copy and Flushing strategies and also the decision of
the MDPM mechanism about the destination machine.

As the results indicated, the MDPM mechanism is tangibly based on the available information col-
lected by the operating system. If the operating system failed to store the history of operations and
the MDPM failed to learn from the gathered information, then the performance and the functionality
of this mechanism would be similar to that of classes I and II as mentioned earlier in the related
works.

6. Discussion
Unlike the cluster computing systems, the peer-to-peer computing systems can define and execute
more than one global activity. In cluster computing systems, all computing processes are involved
in one global activity, indicating similar properties of all the global activities in those processes. In
this paper, we have studied the defined global activities in peer-to-peer computing systems that
indicate that all global processes can be defined by the process generator space defined on two sets
of processes, five special properties, and three types of operators. In this paper, the special proper-
ties of a process are mapped to the five dimensions of the process generator space.

Using a fixed strategy for process migration is the most challenging title in cluster computing
systems. This is due to the disadvantages of a mechanism and reduced performance of the process
migration management. Due to the concept of being involved in more than one global activity in
peer-to-peer computing systems, the process migration management has more flexibility in choos-
ing and using a suitable strategy for process migration. It can also change the current using strategy
based on the requirements. This paper represented MDPM mechanism that can extract properties of
a process and then select the best mechanism for process migration using the gathered
information.

For selecting a suitable strategy, the matching mechanism is used in this paper. By matching the
process properties with the process migration and the properties of the mechanism based on de-
scriptor vectors and scalar variables, the MDPM mechanism selects a strategy. However, in

www.manaraa.com
Page 32 of 36

Mousavi Khaneghah et al., Cogent Engineering (2018), 5: 1458434
https://doi.org/10.1080/23311916.2018.1458434

peer-to-peer computing systems, decisions made by only considering the properties of the strategy
cannot guarantee the performance of a mechanism. In cluster computing systems, the use of each
strategy and the system’s properties are considered to be important; so, there is a requirement of a
flexible algorithm. MDPM is a flexible mechanism that first selects a suitable process for migration by
the load balancer and migration manager, then MDPM mechanism, by considering, process descrip-
tors, a mechanism based on the process generator space, and system situation begins to match the
process space and the mechanism space and select a suitable strategy.

The MDPM mechanism selects more processes for migration compared to other mechanisms in
cluster computing systems. This is because of the difference in the global activity definitions among
the represented mechanism and other available mechanisms. In cluster computing systems, using
each of four basic strategies, the load balancer selects one or more processes. The process manage-
ment migrate the process or processes based on the determining source and destination machines
by the load balancer. From the load balancing view, each process is described in the form of < Waiting
Time, Computing Need Time>, and each computing machine is described in the form < CPU
Usage,<Memory Usage, Network Bandwidth>>, although in many systems < Memory Usage, Network
Bandwidth > elements are ignored. This type of consideration makes the criterion for selecting a
process from the load balancer view, which could be either the usage of the CPU and the process
waiting time.

In MDPM mechanism, unlike the four basic strategies, the load balancer only selects the process,
and the process migration management selects a process for migration. In this mechanism, process
migration management describes each process by Equation (1). In other words, five properties de-
scribe each process. Describing a process based on the five types of properties enable the MDPM
mechanism to decide about the ability of the process migration.

If the load balancer decided to rebalance the load of a peer-to-peer computing system, the pro-
cess migration management of a process could determine the destination machine according to five
properties. Three of these properties are defined as vectors, and two of them are scalar variables.

The use of two scalar variables allows the process migration to decide a suitable mechanism and
decrease the number of destination candidate machines based on the size and usage parameters.
On the other hand, the two vector properties, using vector algebra, make an accurate description
and select the best strategy for process migration. The ability to determine the descriptors vector of
destination machine is similar to the description of the state of the immigrant process. In Equation
(12), for each of these properties, vector parameters, in particular, the weight property, are consid-
ered. Process migration management, based on the weight of parameters and the importance of
running the global activity trend, decides to migrate a process. On the other hand, the description of
the global process by migration management allows this unit to decide on the continuing of the
process activity based on the capability of destination machine. The global process definition based
on the five parameters are compared with the parameters used by load balancer in cluster systems,
more process for migration at the load redistribution time. This model makes it possible to deter-
mine the destination machine based on the process features.

The parameters used in MDPM mechanism enables the process migration management to use the
advantages of all the four basic mechanisms. The MDPM mechanism using the concept of global
activity and the complete required process vectors to create the description status vectors of the
process. In clustering systems, the using mechanisms for each occurrence that results in transmis-
sion, the process migration management begins to migrate the process without mattering the pro-
cess is a member of global activity or a member of a local process. The used mechanism in clustering
systems is not based on history while the MDPM mechanism defines the migration only for the global
computing activities and considers all computing process a member of global activity. Therefore, the
information about migrating operation is stored in the computing global activity’s data structures.
This information storing increases the primitive migration time, but in the sequence of migrations,

www.manaraa.com
Page 33 of 36

Mousavi Khaneghah et al., Cogent Engineering (2018), 5: 1458434
https://doi.org/10.1080/23311916.2018.1458434

the migration time decreases. The MDPM mechanism uses the stored information in computing
global activity’s data structures to match the best migration strategy with the concept of the pro-
cess nature. MDPM mechanism fails if the nature of the global activity is such that the number of
times of migration is small in some total management activities of the process.

The MDPM mechanism, unlike basic strategies used for process migration, considers the local ma-
chine situation and the environment of the system. Basic strategies used in clustering systems, con-
sider a process as a lonely process. In these mechanisms, the process migration management
considers there is only a process in source machine that must be transferred. For performing this
operation, the process may be stated in the frozen state or may transfer only the critical parts of a
process, and when a page fault happens, transmits other residual parts of the process. The main
reason for using this pattern is the process definition in process migration management view. In this
definition, a process is studied only based on the time’s data structures and the main memory

The MDPM mechanism, the process definition is in a way that includes interprocess communica-
tions in local machine and the environment of a local machine. The MDPM mechanism uses five
parameters to describe the process communications and the concept of global activity for studying
the communications between the process and the local machine environment. In the MDPM mecha-
nism, processes are not an abstract concept, but a member of global activity. IPC, Time and Resource
dependency features have direct effects on global activity concept and ideal vector calculations. Due
to this issue MDPM, mechanism considers the process, global activity conditions and process effects
on the environment.

The MDPM mechanism also uses the Equilibrium situation concept. Using the Equilibrium situation
concept will decrease the required time for gathering the parameters for process migration. The re-
sult of the evaluation indicates that, while using the MDPM mechanism, the peer-to-peer computing
system turned into the Equilibrium situation and the mechanism has enough information about the
processes that are the member of a global activity, even by using fixed strategy needs less time for
process migration. According to this reason, MDPM mechanism is not efficient in peer-to-peer com-
puting systems that the membered processes of global activities are few or the needed time for
processing them is much shorter than the system is running time.

As the results of the evaluation confirm, the migration time will be different even when MDPM
mechanism uses a single mechanism for process migration. The reason for this issue is a difference
of system’s situation and communicated process.

The basic strategies used in the computing clustering systems try to reduce the Residual depend-
ency, unlike the MDPM mechanism that may keep up the resource dependency in some conditions.
Global activity’s definition in MDPM mechanism from process migration management’s view is the
reason for keeping up this dependency. In the MDPM mechanism, from the process migration man-
agement’s view, a transmitting process is still a member of a global activity or may have communi-
cations among other processes and global activities.

7. Conclusion
In distributed computing systems, unlike cluster, computing systems can execute more than one
global activities. Executing one global activity in clustering systems causes to be able by extracting
the properties, limitations and the ability of the system, to choose a determined process migration
mechanism. In these systems unlike the distributed computing systems, the ruling concept of global
activities are almost the same. This title makes the system be able to by choosing one process mi-
gration mechanism, transfers all process migrations. On the other hand, related to the differences
between being members of the processes in distributed systems, a single mechanism cannot be
used for all process migrations. This article represented the MDPM mechanism that by using a math-
ematical pattern, tries to describe process migration mechanisms and process properties. The MDPM

www.manaraa.com
Page 34 of 36

Mousavi Khaneghah et al., Cogent Engineering (2018), 5: 1458434
https://doi.org/10.1080/23311916.2018.1458434

mechanism uses vector algebra to indicate the adaptation of the process migration mechanism and
the process properties.

This makes it possible to use a mechanism that is most in line with the computing features of the
processor for process migration. In the MDPM mechanism, unlike traditional process migration, the
choice of five features as a description space for global activities and process migration mechanisms
makes the process migration, in addition to having a more precise description of each mechanism
and any computing process will be able to consider the interactions between the process and the
computational system in choosing the process migration mechanism. In the MDPM mechanism pre-
sented in this paper, the computing process during process migration is not considered as an ab-
stract concept, but the definition of the process and the migration mechanism based on the five
characteristics, makes the process migration and the computational process a part of a global activ-
ity, and its interactions and communication with the environment and system should also be taken
into account during migration. In addition to choosing an appropriate process for process migration
in distributed computing systems such as grid and peer-to-peer systems, this mechanism also al-
lows for consideration of the characteristics of the process migration destination of the computing
process based on the process description. In computing systems, a scientifically applied program is
required for its implementation, and the lifespan of the program in this type of computing system is
longer than the other systems, and it is possible to check the system in a state of provides a balance
over a longer period. This capability enables the MDPM process migration to be used in distributed
Exascale computing systems.

Funding
The authors received no direct funding for this research.

Author details
Ehsan Mousavi Khaneghah1

E-mail: emousavi@shahed.ac.ir
ORCID ID: http://orcid.org/0000-0002-4692-8010
Reyhaneh Noorabad Ghahroodi1

E-mail: rnoorabad@hotmail.com
Amirhosein Reyhani ShowkatAbad1

E-mail: amirhoseinreyhani75@gmail.com
1 Department of Computer Engineering, Shahed University,

Tehran, Iran.

Citation information
Cite this article as: A mathematical multi-dimensional
mechanism to improve process migration efficiency in
peer-to-peer computing environments, Ehsan Mousavi
Khaneghah, Reyhaneh Noorabad Ghahroodi & Amirhosein
Reyhani ShowkatAbad, Cogent Engineering (2018), 5:
1458434.

Cover image
Source: Authors.

References
Adams, J. C., Caswell, J., Matthews, S. J., Peck, C., Shoop, E., &

Toth, D. (2015). Budget Beowulfs: A showcase of
inexpensive clusters for teaching PDC. Proceedings of the
46th ACM Technical Symposium on Computer Science
Education, ACM.

Alghamdi, T. G., De Grande, R. E., & Boukerche, A. (2015).
Enhancing load balancing efficiency based on migration
delay for large-scale distributed simulations. Proceedings
of the 19th International Symposium on Distributed
Simulation and Real Time Applications, IEEE Press.

Ahmad, R. W., Gani, A., Hamid, S. H. Ab., Shiraz, M., Yousafzai,
A., & Xia, F. (2015). A survey on virtual machine migration
and server consolidation frameworks for cloud data
centers. Journal of Network and Computer Applications,
52, 11–25.

Bahena, V. R. (2014). Embedded distributed systems: A case of
study with clear Linux project for Intel R Architecture (pp.
1–8).

Barak, A., Margolin, A., & Shiloh, A. (2012). Automatic resource-
centric process migration for MPI. European MPI Users’
Group Meeting. Berlin, Heidelberg: Springer.

Barak, A., & Shiloh, A. (2013). The MOSIX cluster operating
system for distributed computing on Linux clusters, multi-
clusters and clouds.

Cano, J., Molinos, E., Nagarajan, V., & Vijayakumar, S. (2015).
Dynamic process migration in heterogeneous ROS-based
environments. Advanced Robotics (ICAR), 2015
International Conference on, IEEE.

Chen, S. Y. (2013). Migrating processes in distributed computing
systems.

Desai, T., & Prajapati, J. (2013). A survey of various load
balancing techniques and challenges in cloud computing.
International Journal of Scientific & Technology Research,
2(11), 158–161.

Egwutuoha, I. P., Chen, S., Levy, D., Selic, B., & Calvo, R. (2014).
Cost-oriented proactive fault tolerance approach to high
performance computing (HPC) in the cloud. International
Journal of Parallel, Emergent and Distributed Systems, 29(4),
363–378. https://doi.org/10.1080/17445760.2013.803686

Egwutuoha, I. P., Levy, D., Selic, B., & Chen, S. (2013). A survey
of fault tolerance mechanisms and checkpoint/restart
implementations for high performance computing
systems. The Journal of Supercomputing, 65(3), 1302–
1326. https://doi.org/10.1007/s11227-013-0884-0

Healy, P., Lynn, T., Barrett, E., & Morrison, J. P. (2016). Single
system image: A survey. Journal of Parallel and Distributed
Computing, 90, 35–51.
https://doi.org/10.1016/j.jpdc.2016.01.004

Hsu, C.-H., Peng, S. J., Chan, T. Y., Slagter, K., & Chung, Y. C.
(2014). An adaptive pre-copy strategy for virtual machine
live migration. International Conference on Internet of
Vehicles. Cham: Springer.

Hussain, H., Malik, S. U. R., Hameed, A., Khan, S. U., Bickler, G.,
Min-Allah, N., … Kolodziej, J. (2013). A survey on resource
allocation in high performance distributed computing
systems. Parallel Computing, 39(11), 709–736.
https://doi.org/10.1016/j.parco.2013.09.009

mailto:emousavi@shahed.ac.ir
http://orcid.org/0000-0002-4692-8010
mailto:rnoorabad@hotmail.com
mailto:amirhoseinreyhani75@gmail.com
https://doi.org/10.1080/17445760.2013.803686
https://doi.org/10.1007/s11227-013-0884-0
https://doi.org/10.1016/j.jpdc.2016.01.004
https://doi.org/10.1016/j.jpdc.2016.01.004
https://doi.org/10.1016/j.parco.2013.09.009
https://doi.org/10.1016/j.parco.2013.09.009

www.manaraa.com
Page 35 of 36

Mousavi Khaneghah et al., Cogent Engineering (2018), 5: 1458434
https://doi.org/10.1080/23311916.2018.1458434

Jain, N., Menache, I., Shepherd, F. B., & Naor, J. S. (2017, April
11). Process migration in data center networks. U.S.
Patent No. 9,619,297.

Javanmardi, S., Shojafar, M., Shariatmadari, S., & Ahrabi, S. S.
(2014). Fr trust: A fuzzy reputation–based model for trust
management in semantic p2p grids. International Journal
of Grid and Utility Computing, 6(1), 57–66.

Jianjun, S. H. E. N., Xia, Z. F., Mojiong, Q. I. U., Zhou, S., &
Donghai, H. A. N. (2015, May 19). Hypervisor level
distributed load-balancing. U.S. Patent No. 9,037,719.

Kashyap, S., Dhillon, J. S., & Purini, S. (2014). Rlc-a reliable
approach to fast and efficient live migration of virtual
machines in the clouds. Cloud Computing (CLOUD), 2014
IEEE 7th International Conference on, IEEE.

Katyal, M., & Mishra, A. (2014). A comparative study of load
balancing algorithms in cloud computing environment.
arXiv preprint arXiv:1403.6918.

Khaneghah, E. M. (2017, April 4). PMamut: Runtime flexible
resource management framework in scalable distributed
system based on nature of request, demand and supply
and federalism. U.S. Patent No. 9,613,312.

Khaneghah, E. M., & Sharifi, M. (2014). AMRC: An algebraic
model for reconfiguration of high performance cluster
computing systems at runtime. The Journal of
Supercomputing, 67(1), 1–30.
https://doi.org/10.1007/s11227-013-0982-z

Khorandi, S. M., Mirtaheri, S. L., Khaneghah, E. M., Sharifi, M., &
Ghiasvand, S. (2011). Local robustness: A process
migration criterion in HPC clusters. Innovative Computing
Technology (pp. 374–382). Berlin, Heidelberg: Springer.
https://doi.org/10.1007/978-3-642-27337-7

Krishnan, S. P. T., Veeravalli, B., Krishna, V. H., & Sheng, W. C.
(2014). Performance characterisation and evaluation of
WRF model on cloud and HPC architectures. High
Performance Computing and Communications, 2014 IEEE
6th International Symposium on Cyberspace Safety and
Security, 2014 IEEE 11th International Conference on
Embedded Software and System (HPCC, CSS, ICESS), 2014
IEEE International Conference on, IEEE.

Lei, Z., Sun, E., Chen, S., Wu, J., & Shen, W. (2017). A novel
hybrid-copy algorithm for live migration of virtual
machine. Future Internet, 9(3), 37.

Litton, J., Vahldiek-Oberwagner, A., Elnikety, E., Garg, D.,
Bhattacharjee, B., & Druschel, P. (2016). Light-weight
contexts: An OS abstraction for safety and performance.
OSDI, 49–64.

Liu, C. H. (2015). Application of grids, clouds and high-
performance computing in research of urbanization.
International Symposium on Grids and Clouds, ISGC 2015.

Liu, H., Jin, H., Xu, C. Z., & Liao, X. (2013). Performance and
energy modeling for live migration of virtual machines.
Cluster Computing, 16(2), 249–264.
https://doi.org/10.1007/s10586-011-0194-3

Luntovskyy, A., & Spillner, J. (2017). Evolution of clustering and
parallel computing. Architectural Transformations in
Network Services and Distributed Systems (pp. 45–76).
Wiesbaden: Springer Vieweg.
https://doi.org/10.1007/978-3-658-14842-3

Medina, V., & García, J. M. (2014). A survey of migration
mechanisms of virtual machines. ACM Computing Surveys
(CSUR), 46(3), 30.

Mendygral, P. J., Radcliffe, N., Kandalla, K., Porter, D., O’Neill, B.
J., Nolting, C., … Jones, T. W. (2017). WOMBAT: A scalable
and high-performance astrophysical
magnetohydrodynamics code. The Astrophysical Journal
Supplement Series, 228(2), 23.
https://doi.org/10.3847/1538-4365/aa5b9c

Milani, A. S., & Navimipour, N. J. (2016). Load balancing
mechanisms and techniques in the cloud environments:
Systematic literature review and future trends. Journal of

Network and Computer Applications, 71, 86–98.
https://doi.org/10.1016/j.jnca.2016.06.003

Milojičić, D. (2013). Load distribution: Implementation for the
Mach microkernel. Berlin: Springer-Verlag.

Navimipour, N. J., & Milani, F. S. (2015). A comprehensive study
of the resource discovery techniques in Peer-to-Peer
networks. Peer-to-Peer Networking and Applications, 8(3),
474–492.
https://doi.org/10.1007/s12083-014-0271-5

Navimipour, N. J., Rahmani, A. M., Navin, A. H., & Hosseinzadeh,
M. (2014). Resource discovery mechanisms in grid
systems: A survey. Journal of Network and Computer
Applications, 41, 389–410.
https://doi.org/10.1016/j.jnca.2013.09.013

Patel, D. (2015). Process migration and load balancing.
International Journal of Research in Advance Engineering,
1(1), 25–30. https://doi.org/10.26472/ijrae.v1i1

Patel, M., Chaudhary, S., & Garg, S. (2018). Improved pre-copy
algorithm using statistical prediction and compression
model for efficient live memory migration. International
Journal of High Performance Computing and Networking,
11(1), 55–65.
https://doi.org/10.1504/IJHPCN.2018.088879

Peters, E. C., Rabinowitz, S., Jacobs, H. R., Gillett Jr, R. B., &
Fasciano, P. J. (2015, October 6). Computer system and
process for transferring multiple high bandwidth streams
of data between multiple storage units and multiple
applications in a scalable and reliable manner. U.S. Patent
No. 9,152,647.

Rajan, R. G., & Jeyakrishnan, V. (2013). A survey on load
balancing in cloud computing environments. International
Journal of Advanced Research in Computer and
Communication Engineering, 2(12), 4726–4728.

Rathore, N., & Chana, I. (2014). Load balancing and job
migration techniques in grid: A survey of recent trends.
Wireless Personal Communications, 79(3), 2089–2125.
https://doi.org/10.1007/s11277-014-1975-9

Sandhya, S., Usha, N., & Cauvery, N. K. (2016). Load based
migration based on virtualization using genetic algorithm.
Emerging Research in Computing, Information,
Communication and Applications (pp. 303–310). New
Delhi: Springer. https://doi.
org/10.1007/978-81-322-2553-9

Setiawan, I., & Murdyantoro, E. (2016). Commodity cluster
using single system image based on Linux/Kerrighed for
high-performance computing. Information Technology,
Computer, and Electrical Engineering (ICITACEE), 2016 3rd
International Conference on, IEEE.

Sharifi, M., Mirtaheri, S. L., & Mousavi Khaneghah, E. (2010). A
dynamic framework for integrated management of all
types of resources in P2P systems. The Journal of
Supercomputing, 52(2), 149–170.
https://doi.org/10.1007/s11227-009-0281-x

Sharifi, M., Mirtaheri, S. L., Khaneghah, E. M., & Khaneghah, Z.
M. (2011). Process management reviewed.

Sharifian, H., & Sharifi, M. (2013, January–March). Network ram
based process migration for hpc clusters. Journal of
Information Systems and Telecommunication, 1(1), 47–53.

Spinellis, D. (2017). A repository of Unix history and evolution.
Empirical Software Engineering, 22(3), 1372–1404.
https://doi.org/10.1007/s10664-016-9445-5

Svärd, P., Hudzia, B., Walsh, S., Tordsson, J., & Elmroth, E.
(2015). Principles and performance characteristics of
algorithms for live VM migration. ACM SIGOPS Operating
Systems Review, 49(1), 142–155.

Tanenbaum, A. S., & Bos, H. (2014). Modern operating systems.
Upper Saddle River, NJ: Prentice Hall Press.

Thakkar, N., & Pandya, A. (2013). Process migration in
heterogeneous systems. International Journal for
Scientific Research & Development, 1(7), 2321-0613.

https://doi.org/10.1007/s11227-013-0982-z
https://doi.org/10.1007/s11227-013-0982-z
https://doi.org/10.1007/978-3-642-27337-7
https://doi.org/10.1007/978-3-642-27337-7
https://doi.org/10.1007/s10586-011-0194-3
https://doi.org/10.1007/s10586-011-0194-3
https://doi.org/10.1007/978-3-658-14842-3
https://doi.org/10.1007/978-3-658-14842-3
https://doi.org/10.3847/1538-4365/aa5b9c
https://doi.org/10.3847/1538-4365/aa5b9c
https://doi.org/10.1016/j.jnca.2016.06.003
https://doi.org/10.1016/j.jnca.2016.06.003
https://doi.org/10.1007/s12083-014-0271-5
https://doi.org/10.1007/s12083-014-0271-5
https://doi.org/10.1016/j.jnca.2013.09.013
https://doi.org/10.1016/j.jnca.2013.09.013
https://doi.org/10.26472/ijrae.v1i1
https://doi.org/10.1504/IJHPCN.2018.088879
https://doi.org/10.1504/IJHPCN.2018.088879
https://doi.org/10.1007/s11277-014-1975-9
https://doi.org/10.1007/s11277-014-1975-9
https://doi.org/10.1007/978-81-322-2553-9
https://doi.org/10.1007/978-81-322-2553-9
https://doi.org/10.1007/s11227-009-0281-x
https://doi.org/10.1007/s11227-009-0281-x
https://doi.org/10.1007/s10664-016-9445-5
https://doi.org/10.1007/s10664-016-9445-5

www.manaraa.com
Page 36 of 36

Mousavi Khaneghah et al., Cogent Engineering (2018), 5: 1458434
https://doi.org/10.1080/23311916.2018.1458434

© 2018 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.
You are free to:
Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material for any purpose, even commercially.
The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made.
You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
No additional restrictions
You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Cogent Engineering (ISSN: 2331-1916) is published by Cogent OA, part of Taylor & Francis Group.
Publishing with Cogent OA ensures:
• Immediate, universal access to your article on publication
• High visibility and discoverability via the Cogent OA website as well as Taylor & Francis Online
• Download and citation statistics for your article
• Rapid online publication
• Input from, and dialog with, expert editors and editorial boards
• Retention of full copyright of your article
• Guaranteed legacy preservation of your article
• Discounts and waivers for authors in developing regions
Submit your manuscript to a Cogent OA journal at www.CogentOA.com

Tzeng, C.-W., Huang, S.-Y., & Chao, P.-Y. (2014). Parameterized
all-digital PLL architecture and its compiler to support
easy process migration. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 22(3), 621–630.
https://doi.org/10.1109/TVLSI.2013.2248070

Vyas, R. A., Maheta, H. H., Dabhi, V. K., & Prajapati, H. B. (2014).
Load balancing using process migration for linux based
distributed system. Issues and Challenges in Intelligent
Computing Techniques (ICICT), 2014 International
Conference on, IEEE.

Zarrabi, A. (2012). a generic process migration algorithm.
International Journal of Distributed and Parallel systems,
3(5), 29. https://doi.org/10.5121/ijdps

Zarrabi, A., Samsudin, K., & Wan Adnan, W. A. (2013). Linux
support for fast transparent general purpose checkpoint/
restart of multithreaded processes in loadable kernel
module. Journal of Grid Computing, 11(2), 187–210.
https://doi.org/10.1007/s10723-013-9248-5

Zhongyuan, S., Jianzhong, Q., Shukuan, L., & Qiang, Z. (2015).
Use pre-record algorithm to improve process migration
efficiency. Distributed Computing and Applications for
Business Engineering and Science (DCABES), 2015 14th
International Symposium on, IEEE.

Ziwisky, M. W. (2012). A message-passing, thread-migrating
operating system for a non-cache-coherent many-core
architecture. Milwaukee, WI: Marquette University.

https://doi.org/10.1109/TVLSI.2013.2248070
https://doi.org/10.1109/TVLSI.2013.2248070
https://doi.org/10.5121/ijdps
https://doi.org/10.1007/s10723-013-9248-5
https://doi.org/10.1007/s10723-013-9248-5

www.manaraa.com

© 2018 The Author(s). This open access article is distributed under a Creative
Commons Attribution (CC-BY) 4.0 license. This work is licensed under the

Creative Commons Attribution License creativecommons.org/licenses/by/4.0/
(the “License”). Notwithstanding the ProQuest Terms and Conditions, you may

use this content in accordance with the terms of the License.

	Abstract:
	1. Introduction
	2. Related work
	2.1. Migration mechanism and its important parameters
	2.1.1. Total_Copy
	2.1.2. Pre_Copy
	2.1.3. Lazy_Copy
	2.1.4. Flushing

	3. Basic concepts
	3.1. Process indicator and parameter types influencing process migration mechanism
	3.2. Global activity
	3.3 Summarizing mechanisms based on the defined parameter

	4. MDPM mechanism
	5. Evaluation
	6. Discussion
	7. Conclusion
	Funding
	References

